@@ -25,7 +25,7 @@ class MDD(BaseAdaptDeep):
2525
2626 Parameters
2727 ----------
28- lambda_ : float (default=1. )
28+ lambda_ : float (default=0.1 )
2929 Trade-off parameter
3030
3131 gamma : float (default=4.)
@@ -71,7 +71,7 @@ def __init__(self,
7171 task = None ,
7272 Xt = None ,
7373 yt = None ,
74- lambda_ = 1. ,
74+ lambda_ = 0.1 ,
7575 gamma = 4. ,
7676 copy = True ,
7777 verbose = 1 ,
@@ -124,8 +124,8 @@ def train_step(self, data):
124124 tf .shape (ys_pred )[1 ])
125125 argmax_tgt = tf .one_hot (tf .math .argmax (yt_pred , - 1 ),
126126 tf .shape (yt_pred )[1 ])
127- disc_loss_src = self . task_loss_ ( argmax_src , ys_disc )
128- disc_loss_tgt = self . task_loss_ ( argmax_tgt , yt_disc )
127+ disc_loss_src = - tf . math . log ( tf . reduce_sum ( argmax_src * ys_disc , 1 ) + EPS )
128+ disc_loss_tgt = tf . math . log ( 1. - tf . reduce_sum ( argmax_tgt * yt_disc , 1 ) + EPS )
129129 else :
130130 disc_loss_src = self .task_loss_ (ys_pred , ys_disc )
131131 disc_loss_tgt = self .task_loss_ (yt_pred , yt_disc )
@@ -168,6 +168,7 @@ def train_step(self, data):
168168 logs = {m .name : m .result () for m in self .metrics }
169169 # disc_metrics = self._get_disc_metrics(ys_disc, yt_disc)
170170 logs .update ({"disc_loss" : disc_loss })
171+ logs .update ({"disc_src" : disc_loss_src , "disc_tgt" : disc_loss_tgt })
171172 return logs
172173
173174
0 commit comments