@@ -222,6 +222,7 @@ def plot_map_elites_results(
222222 repertoire : MapElitesRepertoire ,
223223 min_descriptor : jnp .ndarray ,
224224 max_descriptor : jnp .ndarray ,
225+ x_label : str = "Environment steps" ,
225226) -> Tuple [Optional [Figure ], Axes ]:
226227 """Plots three usual QD metrics, namely the coverage, the maximum fitness
227228 and the QD-score, along the number of environment steps. This function also
@@ -235,6 +236,7 @@ def plot_map_elites_results(
235236 repertoire: the final repertoire obtained.
236237 min_descriptor: the minimal possible values for the descriptor.
237238 max_descriptor: the maximal possible values for the descriptor.
239+ x_label: label for the x axis, defaults to environment steps
238240
239241 Returns:
240242 A figure and axes with the plots of the metrics and visualisation of the grid.
@@ -259,19 +261,19 @@ def plot_map_elites_results(
259261 # env_steps = jnp.arange(num_iterations) * episode_length * batch_size
260262
261263 axes [0 ].plot (env_steps , metrics ["coverage" ])
262- axes [0 ].set_xlabel ("Environment steps" )
264+ axes [0 ].set_xlabel (x_label )
263265 axes [0 ].set_ylabel ("Coverage in %" )
264266 axes [0 ].set_title ("Coverage evolution during training" )
265267 axes [0 ].set_aspect (0.95 / axes [0 ].get_data_ratio (), adjustable = "box" )
266268
267269 axes [1 ].plot (env_steps , metrics ["max_fitness" ])
268- axes [1 ].set_xlabel ("Environment steps" )
270+ axes [1 ].set_xlabel (x_label )
269271 axes [1 ].set_ylabel ("Maximum fitness" )
270272 axes [1 ].set_title ("Maximum fitness evolution during training" )
271273 axes [1 ].set_aspect (0.95 / axes [1 ].get_data_ratio (), adjustable = "box" )
272274
273275 axes [2 ].plot (env_steps , metrics ["qd_score" ])
274- axes [2 ].set_xlabel ("Environment steps" )
276+ axes [2 ].set_xlabel (x_label )
275277 axes [2 ].set_ylabel ("QD Score" )
276278 axes [2 ].set_title ("QD Score evolution during training" )
277279 axes [2 ].set_aspect (0.95 / axes [2 ].get_data_ratio (), adjustable = "box" )
0 commit comments