|
1 | 1 | using CompetingClocks |
2 | 2 |
|
3 | | -@safetestset never_fair = "Never fair weather" begin |
| 3 | +@safetestset never_fair = "Never distribution" begin |
4 | 4 | using CompetingClocks: Never |
| 5 | + using Distributions: params, partype, mean, median, mode, var, skewness, kurtosis |
| 6 | + using Distributions: pdf, logpdf, cdf, ccdf, quantile, mgf, cf |
| 7 | + using Random |
5 | 8 |
|
6 | | - n = Never() |
7 | | - p = params(n) |
8 | | - @test p == () |
9 | | - @test isa(n, Never) |
| 9 | + @testset "construction" begin |
| 10 | + n = Never() |
| 11 | + @test isa(n, Never{Float64}) |
| 12 | + @test params(n) == () |
| 13 | + @test partype(n) == Float64 |
| 14 | + |
| 15 | + n32 = Never{Float32}() |
| 16 | + @test isa(n32, Never{Float32}) |
| 17 | + @test partype(n32) == Float32 |
| 18 | + end |
| 19 | + |
| 20 | + @testset "moments and statistics" begin |
| 21 | + n = Never() |
| 22 | + @test mean(n) == typemax(Float64) |
| 23 | + @test median(n) == typemax(Float64) |
| 24 | + @test mode(n) == typemax(Float64) |
| 25 | + @test var(n) == typemax(Float64) |
| 26 | + @test skewness(n) == 0.0 |
| 27 | + @test kurtosis(n) == 0.0 |
| 28 | + end |
| 29 | + |
| 30 | + @testset "probability functions" begin |
| 31 | + n = Never() |
| 32 | + # pdf is 0 everywhere - no probability mass at any finite point |
| 33 | + @test pdf(n, 0.0) == 0.0 |
| 34 | + @test pdf(n, 1.0) == 0.0 |
| 35 | + @test pdf(n, 1e100) == 0.0 |
| 36 | + |
| 37 | + # logpdf is -Inf everywhere |
| 38 | + @test logpdf(n, 0.0) == -Inf |
| 39 | + @test logpdf(n, 1.0) == -Inf |
| 40 | + |
| 41 | + # cdf is 0 everywhere - event never occurs by any finite time |
| 42 | + @test cdf(n, 0.0) == 0.0 |
| 43 | + @test cdf(n, 1e100) == 0.0 |
| 44 | + |
| 45 | + # ccdf is 1 everywhere - survival is certain |
| 46 | + @test ccdf(n, 0.0) == 1.0 |
| 47 | + @test ccdf(n, 1e100) == 1.0 |
| 48 | + |
| 49 | + # quantile is always typemax - any quantile maps to "infinity" |
| 50 | + @test quantile(n, 0.0) == typemax(Float64) |
| 51 | + @test quantile(n, 0.5) == typemax(Float64) |
| 52 | + @test quantile(n, 1.0) == typemax(Float64) |
| 53 | + end |
| 54 | + |
| 55 | + @testset "transforms" begin |
| 56 | + n = Never() |
| 57 | + # mgf: M(t) = E[e^{tX}] for X=∞ |
| 58 | + # t <= 0: e^{t·∞} = 0 |
| 59 | + # t > 0: e^{t·∞} = ∞ |
| 60 | + @test mgf(n, -1.0) == 0.0 |
| 61 | + @test mgf(n, 0.0) == 0.0 |
| 62 | + @test mgf(n, 1.0) == Inf |
| 63 | + |
| 64 | + # cf is undefined for X=∞, returning 0 as sentinel |
| 65 | + @test cf(n, 1.0) == 0.0 |
| 66 | + end |
| 67 | + |
| 68 | + @testset "random sampling" begin |
| 69 | + n = Never() |
| 70 | + rng = Random.MersenneTwister(42) |
| 71 | + |
| 72 | + # Single sample |
| 73 | + @test rand(rng, n) == typemax(Float64) |
| 74 | + |
| 75 | + # Array sampling |
| 76 | + arr = zeros(5) |
| 77 | + Random.rand!(rng, n, arr) |
| 78 | + @test all(x -> x == typemax(Float64), arr) |
| 79 | + end |
| 80 | + |
| 81 | + @testset "type stability" begin |
| 82 | + n32 = Never{Float32}() |
| 83 | + @test mean(n32) == typemax(Float32) |
| 84 | + @test typeof(mean(n32)) == Float32 |
| 85 | + @test skewness(n32) == 0.0f0 |
| 86 | + @test typeof(skewness(n32)) == Float32 |
| 87 | + end |
10 | 88 | end |
0 commit comments