@@ -167,7 +167,7 @@ def fit_predict(self, X, y) -> np.ndarray:
167167 allowed and converted into one of the above.
168168
169169 Different estimators have different capabilities to handle different
170- types of input. If `self.get_tag("capability:multivariate")`` is False,
170+ types of input. If `` self.get_tag("capability:multivariate")`` is False,
171171 they cannot handle multivariate series, so either ``n_channels == 1`` is
172172 true or X is 2D of shape ``(n_cases, n_timepoints)``. If ``self.get_tag(
173173 "capability:unequal_length")`` is False, they cannot handle unequal
@@ -208,7 +208,7 @@ def score(self, X, y, metric="r2", metric_params=None) -> float:
208208 allowed and converted into one of the above.
209209
210210 Different estimators have different capabilities to handle different
211- types of input. If `self.get_tag("capability:multivariate")`` is False,
211+ types of input. If `` self.get_tag("capability:multivariate")`` is False,
212212 they cannot handle multivariate series, so either ``n_channels == 1`` is
213213 true or X is 2D of shape ``(n_cases, n_timepoints)``. If ``self.get_tag(
214214 "capability:unequal_length")`` is False, they cannot handle unequal
@@ -220,7 +220,7 @@ def score(self, X, y, metric="r2", metric_params=None) -> float:
220220 (ground truth) for fitting indices corresponding to instance indices in X.
221221 metric : Union[str, callable], default="r2",
222222 Defines the scoring metric to test the fit of the model. For supported
223- strings arguments, check `sklearn.metrics.get_scorer_names`.
223+ strings arguments, check `` sklearn.metrics.get_scorer_names` `.
224224 metric_params : dict, default=None,
225225 Contains parameters to be passed to the scoring function. If None, no
226226 parameters are passed.
0 commit comments