However, curves are usually higher-order functions than straight lines, so the error function, in the form of the sum of perpendicular distances to a curve, is not usually quadratic. Therefore, these geometric errors cannot be minimized "in a single step," but rather by using iterative nonlinear methods. However, through different approaches, it is possible to "quite well" approximate the minimization of **geometric error** with that of an **algebraic error**, typically quadratic. This categorizes fitting methods into two main families: algebraic and geometric. In general, algebraic error is a good approximation of geometric error, even as the initial seed for iterative geometric methods. See [2] for a continued discussion of these concepts.
0 commit comments