Skip to content

Commit 041fd89

Browse files
Make \prime apostrophe usage consistent (change to prime) (part 2, local identifiers) (#1205)
* Replace apostrophes with \prime in local identifiers across the library
1 parent 2d6e7d5 commit 041fd89

File tree

33 files changed

+139
-139
lines changed

33 files changed

+139
-139
lines changed

README/Case.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ div2 : ℕ → ℕ
5757
div2 zero = zero
5858
div2 (suc m) = case m of λ where
5959
zero zero
60-
(suc m') suc (div2 m')
60+
(suc m) suc (div2 m)
6161

6262

6363
-- Note that some natural uses of case are rejected by the termination

README/Data/List/Relation/Ternary/Interleaving.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -73,12 +73,12 @@ module _ {a p} {A : Set a} {P : Pred A p} (P? : Decidable P) where
7373
filter [] = [] ≡ [] ⊎ []
7474
filter (x ∷ xs) =
7575
-- otherwise we start by running filter on the tail
76-
let xs' ≡ ps ⊎ ¬ps = filter xs in
76+
let xs ≡ ps ⊎ ¬ps = filter xs in
7777
-- And depending on whether `P` holds of the head,
7878
-- we cons it to the `kept` or `thrown` list.
7979
case P? x of λ where -- [1]
80-
(yes p) consˡ xs' ≡ p ∷ ps ⊎ ¬ps
81-
(no ¬p) consʳ xs' ≡ ps ⊎ ¬p ∷ ¬ps
80+
(yes p) consˡ xs ≡ p ∷ ps ⊎ ¬ps
81+
(no ¬p) consʳ xs ≡ ps ⊎ ¬p ∷ ¬ps
8282

8383

8484

README/Data/Tree/AVL.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,8 +24,8 @@ open import Data.String using (String)
2424
open import Data.Vec using (Vec; _∷_; [])
2525
open import Relation.Binary.PropositionalEquality
2626

27-
open Data.Tree.AVL <-strictTotalOrder renaming (Tree to Tree')
28-
Tree = Tree' (MkValue (Vec String) (subst (Vec String)))
27+
open Data.Tree.AVL <-strictTotalOrder renaming (Tree to Tree)
28+
Tree = Tree (MkValue (Vec String) (subst (Vec String)))
2929

3030
------------------------------------------------------------------------
3131
-- Construction of trees

README/Debug/Trace.agda

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -46,8 +46,8 @@ div m n = just (go m m) where
4646
go : (fuel : ℕ) (m : ℕ)
4747
go zero m = trace ("Invariant: " ++ show m ++ " should be zero.") zero
4848
go (suc fuel) m =
49-
let m' = trace ("Thunk for step " ++ show fuel ++ " forced") (m ∸ n) in
50-
trace ("Recursive call for step " ++ show fuel) (suc (go fuel m'))
49+
let m = trace ("Thunk for step " ++ show fuel ++ " forced") (m ∸ n) in
50+
trace ("Recursive call for step " ++ show fuel) (suc (go fuel m))
5151

5252
-- To observe the behaviour of this code, we need to compile it and run it.
5353
-- To run it, we need a main function. We define a very basic one: run div,

README/Nary.agda

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -147,8 +147,8 @@ curry₁ = curryₙ 4
147147
-- to be right nested. Which means that if you have a deeply-nested product
148148
-- then it won't be affected by the procedure.
149149

150-
curry₁' : (A × (B × C) × D E) A (B × C) D E
151-
curry₁' = curryₙ 3
150+
curry₁ : (A × (B × C) × D E) A (B × C) D E
151+
curry₁ = curryₙ 3
152152

153153
-- When we are currying a function, we have no obligation to pass its exact
154154
-- arity as the parameter: we can decide to only curry part of it like so:
@@ -174,8 +174,8 @@ proj₃ = projₙ 5 (# 2)
174174
-- passing `projₙ` a natural number which is smaller than the size of the
175175
-- n-ary product, seeing (A₁ × ⋯ × Aₙ) as (A₁ × ⋯ × (Aₖ × ⋯ × Aₙ)).
176176

177-
proj₃' : (A × B × C × D × E) C × D × E
178-
proj₃' = projₙ 3 (# 2)
177+
proj₃ : (A × B × C × D × E) C × D × E
178+
proj₃ = projₙ 3 (# 2)
179179

180180
-----------------------------------------------------------------------
181181
-- insertₙ : ∀ n (k : Fin (suc n)) →
@@ -184,8 +184,8 @@ proj₃' = projₙ 3 (# 2)
184184
insert₁ : C (A × B × D × E) (A × B × C × D × E)
185185
insert₁ = insertₙ 4 (# 2)
186186

187-
insert₁' : C (A × B × D × E) (A × B × C × D × E)
188-
insert₁' = insertₙ 3 (# 2)
187+
insert₁ : C (A × B × D × E) (A × B × C × D × E)
188+
insert₁ = insertₙ 3 (# 2)
189189

190190
-- Note that `insertₙ` takes a `Fin (suc n)`. Indeed in an n-ary product
191191
-- there are (suc n) positions at which one may insert a value. We may
@@ -248,10 +248,10 @@ compose₁ f = 1 %= f ⊢ replicate
248248
-- Here we spell out the equivalent explicit variable-manipulation and
249249
-- prove the two functions equal.
250250

251-
compose₁' : (A B) A List B
252-
compose₁' f n a = replicate n (f a)
251+
compose₁ : (A B) A List B
252+
compose₁ f n a = replicate n (f a)
253253

254-
compose₁-eq : compose₁ {a} {A} {b} {B} ≡ compose₁'
254+
compose₁-eq : compose₁ {a} {A} {b} {B} ≡ compose₁
255255
compose₁-eq = refl
256256

257257
-----------------------------------------------------------------------

src/Algebra/Properties/BooleanAlgebra.agda

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -437,7 +437,7 @@ module XorRing
437437
((x ∨ y) ∧ (¬ x ∨ ¬ y)) ∨ z ≈˘⟨ ∨-congʳ $ ∧-congˡ (deMorgan₁ _ _) ⟩
438438
((x ∨ y) ∧ ¬ (x ∧ y)) ∨ z ∎
439439

440-
lem₂' = begin
440+
lem₂ = begin
441441
(x ∨ ¬ y) ∧ (¬ x ∨ y) ≈˘⟨ ∧-identityˡ _ ⟨ ∧-cong ⟩ ∧-identityʳ _ ⟩
442442
(⊤ ∧ (x ∨ ¬ y)) ∧ ((¬ x ∨ y) ∧ ⊤) ≈˘⟨ (∨-complementˡ _ ⟨ ∧-cong ⟩ ∨-comm _ _)
443443
⟨ ∧-cong ⟩
@@ -450,7 +450,7 @@ module XorRing
450450

451451
lem₂ = begin
452452
((x ∨ ¬ y) ∨ ¬ z) ∧ ((¬ x ∨ y) ∨ ¬ z) ≈˘⟨ ∨-∧-distribʳ _ _ _ ⟩
453-
((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂'
453+
((x ∨ ¬ y) ∧ (¬ x ∨ y)) ∨ ¬ z ≈⟨ ∨-congʳ lem₂
454454
¬ ((x ∨ y) ∧ ¬ (x ∧ y)) ∨ ¬ z ≈˘⟨ deMorgan₁ _ _ ⟩
455455
¬ (((x ∨ y) ∧ ¬ (x ∧ y)) ∧ z) ∎
456456

@@ -460,7 +460,7 @@ module XorRing
460460
(x ∨ (y ∨ z)) ∧ (x ∨ (¬ y ∨ ¬ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩
461461
((x ∨ y) ∨ z) ∧ ((x ∨ ¬ y) ∨ ¬ z) ∎
462462

463-
lem₄' = begin
463+
lem₄ = begin
464464
¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ deMorgan₁ _ _ ⟩
465465
¬ (y ∨ z) ∨ ¬ ¬ (y ∧ z) ≈⟨ deMorgan₂ _ _ ⟨ ∨-cong ⟩ ¬-involutive _ ⟩
466466
(¬ y ∧ ¬ z) ∨ (y ∧ z) ≈⟨ lemma₂ _ _ _ _ ⟩
@@ -474,7 +474,7 @@ module XorRing
474474

475475
lem₄ = begin
476476
¬ (x ∧ ((y ∨ z) ∧ ¬ (y ∧ z))) ≈⟨ deMorgan₁ _ _ ⟩
477-
¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄'
477+
¬ x ∨ ¬ ((y ∨ z) ∧ ¬ (y ∧ z)) ≈⟨ ∨-congˡ lem₄
478478
¬ x ∨ ((y ∨ ¬ z) ∧ (¬ y ∨ z)) ≈⟨ ∨-∧-distribˡ _ _ _ ⟩
479479
(¬ x ∨ (y ∨ ¬ z)) ∧
480480
(¬ x ∨ (¬ y ∨ z)) ≈˘⟨ ∨-assoc _ _ _ ⟨ ∧-cong ⟩ ∨-assoc _ _ _ ⟩

src/Category/Monad/Continuation.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ DContTIMonadDCont : ∀ (K : I → Set f) {M} →
5858
DContTIMonadDCont K Mon = record
5959
{ monad = DContTIMonad K Mon
6060
; reset = λ e k e return >>= k
61-
; shift = λ e k e (λ a k' (k a) >>= k') return
61+
; shift = λ e k e (λ a k (k a) >>= k) return
6262
}
6363
where
6464
open RawIMonad Mon

src/Category/Monad/Indexed.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -48,7 +48,7 @@ record RawIMonad {I : Set i} (M : IFun I f) : Set (i ⊔ suc f) where
4848
rawIApplicative : RawIApplicative M
4949
rawIApplicative = record
5050
{ pure = return
51-
; _⊛_ = λ f x f >>= λ f' x >>= λ x' return (f' x')
51+
; _⊛_ = λ f x f >>= λ f x >>= λ x return (f′ x′)
5252
}
5353

5454
open RawIApplicative rawIApplicative public

src/Codata/Cowriter.agda

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ _>>=_ : ∀ {i} → Cowriter W A i → (A → Cowriter W X i) → Cowriter W X i
113113

114114
unfold : {i} (X (W × X) ⊎ A) X Cowriter W A i
115115
unfold next seed with next seed
116-
... | inj₁ (w , seed') = w ∷ λ where .force unfold next seed'
116+
... | inj₁ (w , seed) = w ∷ λ where .force unfold next seed
117117
... | inj₂ a = [ a ]
118118

119119

src/Data/DifferenceList.agda

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -72,10 +72,10 @@ map f xs = λ k → List.map f (toList xs) ⟨ List._++_ ⟩ k
7272
-- concat is linear in the length of the outer list.
7373

7474
concat : DiffList (DiffList A) DiffList A
75-
concat xs = concat' (toList xs)
75+
concat xs = concat (toList xs)
7676
where
77-
concat' : List (DiffList A) DiffList A
78-
concat' = List.foldr _++_ []
77+
concat : List (DiffList A) DiffList A
78+
concat = List.foldr _++_ []
7979

8080
take : DiffList A DiffList A
8181
take n = lift (List.take n)

0 commit comments

Comments
 (0)