Skip to content

Commit 1dd33ee

Browse files
committed
add: more commentary text
1 parent 7ad3526 commit 1dd33ee

File tree

2 files changed

+16
-7
lines changed

2 files changed

+16
-7
lines changed

src/Relation/Unary.agda

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -261,21 +261,26 @@ P ⊥ Q = P ∩ Q ⊆ ∅
261261
_⊥′_ : Pred A ℓ₁ Pred A ℓ₂ Set _
262262
P ⊥′ Q = P ∩ Q ⊆′ ∅
263263

264-
-- Update/functorial change-of-base
265-
266-
-- The notation captures the Martin-Löf tradition of only mentioning
267-
-- updates to the ambient context when describing a context-indexed
268-
-- family P e.g. (_, σ) ⊢ Tm τ is
264+
-- Update/preimage/inverse image/functorial change-of-base
265+
--
266+
-- The notation, which elsewhere might be rendered
267+
-- * `f⁻¹ P`, for preimage/inverse image
268+
-- * `f* P`, for change-of-base/pullback along `f`
269+
-- captures the Martin-Löf tradition of only mentioning updates to
270+
-- the ambient context when describing a context-indexed family P:
271+
-- e.g. (_, σ) ⊢ Tm τ is
269272
-- "a term of type τ in the ambient context extended with a fresh σ".
270273

271274
_⊢_ : (A B) Pred B ℓ Pred A ℓ
272275
f ⊢ P = λ x P (f x)
273276

274277
-- Change-of-base has left- and right- adjoints (Lawvere).
278+
--
275279
-- We borrow the 'diamond'/'box' notation from modal logic, cf.
276280
-- `Relation.Unary.Closure.Base`, rather than Lawvere's ∃f, ∀f.
277-
-- In some settings, the left adjoint is called 'image' or 'pushforward',
278-
-- but the right adjoint doesn't seem to have a non-symbolic name.
281+
-- In some settings (eg statistics/probability), the left adjoint
282+
-- is called 'image' or 'pushforward', but the right adjoint
283+
-- doesn't seem to have a non-symbolic name.
279284

280285
-- Diamond
281286

src/Relation/Unary/Properties.agda

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -230,12 +230,16 @@ module _ {P : Pred B ℓ₁} {Q : Pred B ℓ₂} where
230230

231231
module _ {P : Pred A ℓ₁} {Q : Pred B ℓ₂} (f : A B) where
232232

233+
-- ⟨ f ⟩⊢_ is left adjoint to f ⊢_ for given f
234+
233235
⟨_⟩⊢⁻_ : ⟨ f ⟩⊢ P ⊆ Q P ⊆ f ⊢ Q
234236
⟨_⟩⊢⁻_ ⟨f⟩⊢P⊆Q Px = ⟨f⟩⊢P⊆Q (_ , refl , Px)
235237

236238
⟨_⟩⊢⁺_ : P ⊆ f ⊢ Q ⟨ f ⟩⊢ P ⊆ Q
237239
⟨_⟩⊢⁺_ P⊆f⊢Q (_ , refl , Px) = P⊆f⊢Q Px
238240

241+
-- [ f ]⊢_ is right adjoint to f ⊢_ for given f
242+
239243
[_]⊢⁻_ : Q ⊆ [ f ]⊢ P f ⊢ Q ⊆ P
240244
[_]⊢⁻_ Q⊆[f]⊢P Qfx = Q⊆[f]⊢P Qfx refl
241245

0 commit comments

Comments
 (0)