File tree Expand file tree Collapse file tree 9 files changed +49
-41
lines changed Expand file tree Collapse file tree 9 files changed +49
-41
lines changed Original file line number Diff line number Diff line change 8
8
9
9
module Algebra.Lattice.Morphism.Construct.Composition where
10
10
11
- open import Algebra.Lattice.Bundles
11
+ open import Algebra.Lattice.Bundles using (RawLattice)
12
12
open import Algebra.Lattice.Morphism.Structures
13
+ using (IsLatticeHomomorphism; IsLatticeIsomorphism; IsLatticeMonomorphism)
13
14
open import Function.Base using (_∘_)
14
15
import Function.Construct.Composition as Func
15
16
open import Level using (Level)
16
17
open import Relation.Binary.Morphism.Construct.Composition
18
+ using (isRelHomomorphism)
17
19
open import Relation.Binary.Definitions using (Transitive)
18
20
19
21
private
Original file line number Diff line number Diff line change 8
8
9
9
module Algebra.Lattice.Morphism.Construct.Identity where
10
10
11
- open import Algebra.Lattice.Bundles
11
+ open import Algebra.Lattice.Bundles using (RawLattice)
12
12
open import Algebra.Lattice.Morphism.Structures
13
13
using ( module LatticeMorphisms )
14
14
open import Data.Product.Base using (_,_)
Original file line number Diff line number Diff line change 9
9
10
10
{-# OPTIONS --cubical-compatible --safe #-}
11
11
12
- open import Algebra
13
12
open import Algebra.Lattice
14
- open import Algebra.Lattice.Morphism.Structures
15
- import Algebra.Consequences.Setoid as Consequences
13
+ using (RawLattice; IsLattice; IsDistributiveLattice; isDistributiveLatticeʳʲᵐ)
14
+ open import Algebra.Lattice.Morphism.Structures using (IsLatticeMonomorphism)
15
+
16
+ module Algebra.Lattice.Morphism.LatticeMonomorphism
17
+ {a b ℓ₁ ℓ₂} {L₁ : RawLattice a ℓ₁} {L₂ : RawLattice b ℓ₂} {⟦_⟧}
18
+ (isLatticeMonomorphism : IsLatticeMonomorphism L₁ L₂ ⟦_⟧)
19
+ where
20
+
21
+ open import Algebra using (Absorptive; _Absorbs_; _DistributesOverʳ_)
16
22
import Algebra.Morphism.MagmaMonomorphism as MagmaMonomorphisms
17
23
import Algebra.Lattice.Properties.Lattice as LatticeProperties
18
24
open import Data.Product.Base using (_,_; map)
19
25
open import Relation.Binary.Bundles using (Setoid)
20
26
import Relation.Binary.Morphism.RelMonomorphism as RelMonomorphisms
21
27
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
22
28
23
- module Algebra.Lattice.Morphism.LatticeMonomorphism
24
- {a b ℓ₁ ℓ₂} {L₁ : RawLattice a ℓ₁} {L₂ : RawLattice b ℓ₂} {⟦_⟧}
25
- (isLatticeMonomorphism : IsLatticeMonomorphism L₁ L₂ ⟦_⟧)
26
- where
27
-
28
29
open IsLatticeMonomorphism isLatticeMonomorphism
29
30
open RawLattice L₁ renaming (_≈_ to _≈₁_; _∨_ to _∨_; _∧_ to _∧_)
30
31
open RawLattice L₂ renaming (_≈_ to _≈₂_; _∨_ to _⊔_; _∧_ to _⊓_)
Original file line number Diff line number Diff line change 6
6
7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
- open import Algebra.Core
10
- open import Algebra.Bundles
11
- open import Algebra.Morphism
12
- open import Algebra.Lattice.Bundles
9
+ module Algebra.Lattice.Morphism.Structures where
10
+
11
+ open import Algebra.Core using (Op₂)
12
+ open import Algebra.Morphism using (module MagmaMorphisms )
13
+ open import Algebra.Lattice.Bundles using (RawLattice)
13
14
import Algebra.Morphism.Definitions as MorphismDefinitions
14
15
open import Level using (Level; _⊔_)
15
- open import Function.Definitions
16
- open import Relation.Binary.Morphism.Structures
17
- open import Relation.Binary.Core
18
-
19
- module Algebra.Lattice.Morphism.Structures where
16
+ open import Function.Definitions using (Injective; Surjective)
17
+ open import Relation.Binary.Morphism.Structures using (IsRelHomomorphism)
18
+ open import Relation.Binary.Core using (Rel)
20
19
21
20
private
22
21
variable
Original file line number Diff line number Diff line change @@ -15,11 +15,11 @@ module Algebra.Lattice.Properties.BooleanAlgebra
15
15
open BooleanAlgebra B
16
16
17
17
import Algebra.Lattice.Properties.DistributiveLattice as DistribLatticeProperties
18
- open import Algebra.Core
18
+ open import Algebra.Core using (Op₁; Op₂)
19
19
open import Algebra.Structures _≈_
20
20
open import Algebra.Definitions _≈_
21
21
open import Algebra.Consequences.Setoid setoid
22
- open import Algebra.Bundles
22
+ open import Algebra.Bundles using (CommutativeSemiring; CommutativeRing)
23
23
open import Algebra.Lattice.Structures _≈_
24
24
open import Relation.Binary.Reasoning.Setoid setoid
25
25
open import Function.Base using (id; _$_; _⟨_⟩_)
Original file line number Diff line number Diff line change 6
6
7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
- open import Algebra.Lattice.Bundles
10
- import Algebra.Lattice.Properties.Lattice as LatticeProperties
9
+ open import Algebra.Lattice.Bundles using (DistributiveLattice)
11
10
12
11
module Algebra.Lattice.Properties.DistributiveLattice
13
12
{dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂)
14
13
where
15
14
15
+ import Algebra.Lattice.Properties.Lattice as LatticeProperties
16
16
open DistributiveLattice DL
17
17
open import Algebra.Definitions _≈_
18
18
open import Algebra.Lattice.Structures _≈_
Original file line number Diff line number Diff line change 6
6
7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
- open import Algebra.Lattice.Bundles
10
- import Algebra.Lattice.Properties.Semilattice as SemilatticeProperties
11
- open import Relation.Binary.Bundles using (Poset)
12
- import Relation.Binary.Lattice as R
13
- open import Function.Base
14
- open import Data.Product.Base using (_,_; swap)
9
+ open import Algebra.Lattice.Bundles using (Lattice; Semilattice)
15
10
16
11
module Algebra.Lattice.Properties.Lattice
17
12
{l₁ l₂} (L : Lattice l₁ l₂) where
18
13
14
+ import Algebra.Lattice.Properties.Semilattice as SemilatticeProperties
15
+ open import Data.Product.Base using (_,_; swap)
19
16
open Lattice L
20
- open import Algebra.Definitions _≈_
21
- open import Algebra.Structures _≈_
22
- open import Algebra.Lattice.Structures _≈_
17
+ open import Algebra.Definitions _≈_ using (Idempotent; Congruent₂)
18
+ open import Algebra.Structures _≈_ using (IsMagma; IsSemigroup; IsBand)
19
+ open import Algebra.Lattice.Structures _≈_ using (IsLattice; IsSemilattice)
20
+ open import Function.Base
23
21
open import Relation.Binary.Reasoning.Setoid setoid
22
+ open import Relation.Binary.Bundles using (Poset)
23
+ import Relation.Binary.Lattice as R
24
24
25
25
------------------------------------------------------------------------
26
26
-- _∧_ is a semilattice
Original file line number Diff line number Diff line change 7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
9
open import Algebra.Lattice.Bundles using (Semilattice)
10
- open import Relation.Binary.Bundles using (Poset)
11
- import Relation.Binary.Lattice as B
12
- import Relation.Binary.Properties.Poset as PosetProperties
13
10
14
11
module Algebra.Lattice.Properties.Semilattice
15
12
{c ℓ} (L : Semilattice c ℓ) where
16
13
14
+ open import Relation.Binary.Bundles using (Poset)
15
+ import Relation.Binary.Lattice as B
16
+ import Relation.Binary.Properties.Poset as PosetProperties
17
17
open Semilattice L renaming (_∙_ to _∧_)
18
18
19
19
open import Relation.Binary.Reasoning.Setoid setoid
Original file line number Diff line number Diff line change 12
12
13
13
{-# OPTIONS --cubical-compatible --safe #-}
14
14
15
- open import Algebra.Core
16
- open import Algebra.Consequences.Setoid
17
- open import Data.Product.Base using (proj₁; proj₂)
18
- open import Level using (_⊔_)
19
15
open import Relation.Binary.Core using (Rel)
20
- open import Relation.Binary.Bundles using (Setoid)
21
- open import Relation.Binary.Structures using (IsEquivalence)
22
16
23
17
module Algebra.Lattice.Structures.Biased
24
18
{a ℓ} {A : Set a} -- The underlying set
25
19
(_≈_ : Rel A ℓ) -- The underlying equality relation
26
20
where
27
21
22
+ open import Algebra.Core using (Op₁; Op₂)
23
+ open import Algebra.Consequences.Setoid
24
+ using (comm∧distrʳ⇒distr; distrib∧absorbs⇒distribˡ; comm∧distrˡ⇒distr;
25
+ comm∧invʳ⇒inv)
26
+ open import Data.Product.Base using (proj₁; proj₂)
27
+ open import Level using (_⊔_)
28
+ open import Relation.Binary.Bundles using (Setoid)
29
+ open import Relation.Binary.Structures using (IsEquivalence)
28
30
open import Algebra.Definitions _≈_
31
+ using (Associative; Commutative; Congruent₁; RightInverse;
32
+ _DistributesOverʳ_; Absorptive)
29
33
open import Algebra.Lattice.Structures _≈_
34
+ using (IsJoinSemilattice; IsMeetSemilattice; IsLattice;
35
+ IsDistributiveLattice; IsBooleanAlgebra)
30
36
31
37
private
32
38
variable
You can’t perform that action at this time.
0 commit comments