@@ -19,7 +19,7 @@ open import Algebra.Bundles
19
19
open import Algebra.Bundles.Raw
20
20
using (RawMagma)
21
21
open import Algebra.Core using (Op₂)
22
- open import Algebra.Definitions using (Congruent₂)
22
+ open import Algebra.Definitions using (Congruent₂; Associative; Idempotent )
23
23
open import Algebra.Structures using (IsMagma; IsSemigroup; IsBand)
24
24
open import Data.Empty.Polymorphic using (⊥)
25
25
open import Relation.Binary.Core using (Rel)
@@ -63,6 +63,12 @@ module ℤero where
63
63
∙-cong : Congruent₂ _≈_ _∙_
64
64
∙-cong {x = ()}
65
65
66
+ assoc : Associative _≈_ _∙_
67
+ assoc ()
68
+
69
+ idem : Idempotent _≈_ _∙_
70
+ idem ()
71
+
66
72
open ℤero
67
73
68
74
------------------------------------------------------------------------
@@ -75,16 +81,16 @@ rawMagma = record { ℤero }
75
81
-- Structures
76
82
77
83
isEquivalence : IsEquivalence _≈_
78
- isEquivalence = record { refl = refl; sym = sym; trans = λ {k = k} → trans {k = k } }
84
+ isEquivalence = record { refl = refl; sym = sym; trans = λ where {i = () } }
79
85
80
86
isMagma : IsMagma _≈_ _∙_
81
- isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ {y = y} {u = u} {v = v} → ∙-cong {y = y} {v = v } }
87
+ isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ where {x = () } }
82
88
83
89
isSemigroup : IsSemigroup _≈_ _∙_
84
- isSemigroup = record { isMagma = isMagma ; assoc = λ () }
90
+ isSemigroup = record { isMagma = isMagma ; assoc = assoc }
85
91
86
92
isBand : IsBand _≈_ _∙_
87
- isBand = record { isSemigroup = isSemigroup ; idem = λ () }
93
+ isBand = record { isSemigroup = isSemigroup ; idem = idem }
88
94
89
95
------------------------------------------------------------------------
90
96
-- Bundles
0 commit comments