@@ -21,13 +21,35 @@ Bug-fixes
21
21
* The binary relation ` _≉_ ` exposed by records in ` Relation.Binary.Bundles ` now has
22
22
the correct infix precedence.
23
23
24
+ * Added version to library name
25
+
24
26
Non-backwards compatible changes
25
27
--------------------------------
26
28
27
29
* The internal build utilities package ` lib.cabal ` has been renamed
28
30
` agda-stdlib-utils.cabal ` to avoid potential conflict or confusion.
29
31
Please note that the package is not intended for external use.
30
- * The module ` Algebra.Construct.Zero ` and ` Algebra.Module.Construct.Zero ` are now level-polymorphic, each taking two implicit level parameters.
32
+
33
+ * The module ` Algebra.Construct.Zero ` and ` Algebra.Module.Construct.Zero `
34
+ are now level-polymorphic, each taking two implicit level parameters.
35
+
36
+ * Previously the definition of ` _⊖_ ` in ` Data.Integer.Base ` was defined
37
+ inductively as:
38
+ ``` agda
39
+ _⊖_ : ℕ → ℕ → ℤ
40
+ m ⊖ ℕ.zero = + m
41
+ ℕ.zero ⊖ ℕ.suc n = -[1+ n ]
42
+ ℕ.suc m ⊖ ℕ.suc n = m ⊖ n
43
+ ```
44
+ which meant that the unary arguments had to be evaluated. To make it
45
+ much faster it's definition has been changed to use operations on ` ℕ `
46
+ that are backed by builtin operations:
47
+ ``` agda
48
+ _⊖_ : ℕ → ℕ → ℤ
49
+ m ⊖ n with m ℕ.<ᵇ n
50
+ ... | true = - + (n ℕ.∸ m)
51
+ ... | false = + (m ℕ.∸ n)
52
+ ```
31
53
32
54
Deprecated modules
33
55
------------------
@@ -115,6 +137,13 @@ Other minor additions
115
137
CancellativeCommutativeSemiring c ℓ : Set (suc (c ⊔ ℓ))
116
138
```
117
139
140
+ * Added new definitions to ` Algebra.Definitions ` :
141
+ ``` agda
142
+ AlmostLeftCancellative e _•_ = ∀ {x} y z → ¬ x ≈ e → (x • y) ≈ (x • z) → y ≈ z
143
+ AlmostRightCancellative e _•_ = ∀ {x} y z → ¬ x ≈ e → (y • x) ≈ (z • x) → y ≈ z
144
+ AlmostCancellative e _•_ = AlmostLeftCancellative e _•_ × AlmostRightCancellative e _•_
145
+ ```
146
+
118
147
* Added new records to ` Algebra.Morphism.Structures ` :
119
148
``` agda
120
149
IsNearSemiringHomomorphism (⟦_⟧ : A → B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂)
@@ -128,27 +157,38 @@ Other minor additions
128
157
IsLatticeIsomorphism (⟦_⟧ : A → B) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
129
158
```
130
159
131
- * Added new proofs to ` Relation.Binary.Construct.Closure.Transitive ` :
160
+ * Added new definitions to ` Algebra.Structures ` :
132
161
``` agda
133
- reflexive : Reflexive _∼_ → Reflexive _∼⁺_
134
- symmetric : Symmetric _∼_ → Symmetric _∼⁺_
135
- transitive : Transitive _∼⁺_
136
- wellFounded : WellFounded _∼_ → WellFounded _∼⁺_
162
+ IsCommutativeMagma (• : Op₂ A) : Set (a ⊔ ℓ)
163
+ IsCancellativeCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ)
164
+ ```
137
165
138
- * Added new definitions to `Algebra.Definitions `:
166
+ * Added new proofs in ` Data.Integer.Properties ` :
139
167
``` agda
140
- AlmostLeftCancellative e _•_ = ∀ {x} y z → ¬ x ≈ e → (x • y) ≈ (x • z) → y ≈ z
141
- AlmostRightCancellative e _•_ = ∀ {x} y z → ¬ x ≈ e → (y • x) ≈ (z • x) → y ≈ z
142
- AlmostCancellative e _•_ = AlmostLeftCancellative e _•_ × AlmostRightCancellative e _•_
168
+ [1+m]⊖[1+n]≡m⊖n : suc m ⊖ suc n ≡ m ⊖ n
169
+ ⊖-≤ : m ≤ n → m ⊖ n ≡ - + (n ∸ m)
170
+ -m+n≡n⊖m : - (+ m) + + n ≡ n ⊖ m
171
+ m-n≡m⊖n : + m + (- + n) ≡ m ⊖ n
143
172
```
144
173
145
- * Added new record to ` Algebra.Structures ` :
174
+ * Added new definition in ` Data.Nat.Base ` :
146
175
``` agda
147
- IsCommutativeMagma (• : Op₂ A) : Set (a ⊔ ℓ)
148
- IsCancellativeCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ)
176
+ _≤ᵇ_ : (m n : ℕ) → Bool
149
177
```
150
178
151
- * Add version to library name
179
+ * Added new proofs in ` Data.Nat.Properties ` :
180
+ ``` agda
181
+ ≤ᵇ⇒≤ : T (m ≤ᵇ n) → m ≤ n
182
+ ≤⇒≤ᵇ : m ≤ n → T (m ≤ᵇ n)
183
+
184
+ <ᵇ-reflects-< : Reflects (m < n) (m <ᵇ n)
185
+ ≤ᵇ-reflects-≤ : Reflects (m ≤ n) (m ≤ᵇ n)
186
+ ```
187
+
188
+ * Added new proof in ` Relation.Nullary.Reflects ` :
189
+ ``` agda
190
+ fromEquivalence : (T b → P) → (P → T b) → Reflects P b
191
+ ```
152
192
153
193
* Add new properties to ` Data.Vec.Properties ` :
154
194
``` agda
@@ -160,6 +200,14 @@ Other minor additions
160
200
zipWith-replicate : zipWith {n = n} _⊕_ (replicate x) (replicate y) ≡ replicate (x ⊕ y)
161
201
```
162
202
203
+ * Added new proofs to ` Relation.Binary.Construct.Closure.Transitive ` :
204
+ ``` agda
205
+ reflexive : Reflexive _∼_ → Reflexive _∼⁺_
206
+ symmetric : Symmetric _∼_ → Symmetric _∼⁺_
207
+ transitive : Transitive _∼⁺_
208
+ wellFounded : WellFounded _∼_ → WellFounded _∼⁺_
209
+ ```
210
+
163
211
* Add new properties to ` Data.Integer.Properties ` :
164
212
``` agda
165
213
+-*-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
0 commit comments