Skip to content

Commit 8038838

Browse files
committed
add: Identity and Zero elements are Central
1 parent cbfc19e commit 8038838

File tree

2 files changed

+13
-0
lines changed

2 files changed

+13
-0
lines changed

CHANGELOG.md

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -118,12 +118,16 @@ Additions to existing modules
118118
```agda
119119
binomial-expansion : Associative _∙_ → _◦_ DistributesOver _∙_ →
120120
∀ w x y z → ((w ∙ x) ◦ (y ∙ z)) ≡ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
121+
identity⇒central : Identity e _∙_ → Central _∙_ e
122+
zero⇒central : Zero e _∙_ → Central _∙_ e
121123
```
122124

123125
* In `Algebra.Consequences.Setoid`:
124126
```agda
125127
binomial-expansion : Congruent₂ _∙_ → Associative _∙_ → _◦_ DistributesOver _∙_ →
126128
∀ w x y z → ((w ∙ x) ◦ (y ∙ z)) ≈ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
129+
identity⇒central : Identity e _∙_ → Central _∙_ e
130+
zero⇒central : Zero e _∙_ → Central _∙_ e
127131
```
128132

129133
* In `Algebra.Definitions`:

src/Algebra/Consequences/Setoid.agda

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -184,6 +184,15 @@ module _ {_∙_ : Op₂ A} (comm : Commutative _∙_) {e : A} where
184184
x ∙ z ≈⟨ comm x z ⟩
185185
z ∙ x ∎
186186

187+
module _ {_∙_ : Op₂ A} {e : A} where
188+
189+
identity⇒central : Identity e _∙_ Central _∙_ e
190+
identity⇒central (identityˡ , identityʳ) x = trans (identityˡ x) (sym (identityʳ x))
191+
192+
zero⇒central : Zero e _∙_ Central _∙_ e
193+
zero⇒central (zeroˡ , zeroʳ) x = trans (zeroˡ x) (sym (zeroʳ x))
194+
195+
187196
------------------------------------------------------------------------
188197
-- Group-like structures
189198

0 commit comments

Comments
 (0)