File tree Expand file tree Collapse file tree 2 files changed +13
-0
lines changed
Expand file tree Collapse file tree 2 files changed +13
-0
lines changed Original file line number Diff line number Diff line change @@ -118,12 +118,16 @@ Additions to existing modules
118118 ``` agda
119119 binomial-expansion : Associative _∙_ → _◦_ DistributesOver _∙_ →
120120 ∀ w x y z → ((w ∙ x) ◦ (y ∙ z)) ≡ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
121+ identity⇒central : Identity e _∙_ → Central _∙_ e
122+ zero⇒central : Zero e _∙_ → Central _∙_ e
121123 ```
122124
123125* In ` Algebra.Consequences.Setoid ` :
124126 ``` agda
125127 binomial-expansion : Congruent₂ _∙_ → Associative _∙_ → _◦_ DistributesOver _∙_ →
126128 ∀ w x y z → ((w ∙ x) ◦ (y ∙ z)) ≈ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
129+ identity⇒central : Identity e _∙_ → Central _∙_ e
130+ zero⇒central : Zero e _∙_ → Central _∙_ e
127131 ```
128132
129133* In ` Algebra.Definitions ` :
Original file line number Diff line number Diff line change @@ -184,6 +184,15 @@ module _ {_∙_ : Op₂ A} (comm : Commutative _∙_) {e : A} where
184184 x ∙ z ≈⟨ comm x z ⟩
185185 z ∙ x ∎
186186
187+ module _ {_∙_ : Op₂ A} {e : A} where
188+
189+ identity⇒central : Identity e _∙_ → Central _∙_ e
190+ identity⇒central (identityˡ , identityʳ) x = trans (identityˡ x) (sym (identityʳ x))
191+
192+ zero⇒central : Zero e _∙_ → Central _∙_ e
193+ zero⇒central (zeroˡ , zeroʳ) x = trans (zeroˡ x) (sym (zeroʳ x))
194+
195+
187196------------------------------------------------------------------------
188197-- Group-like structures
189198
You can’t perform that action at this time.
0 commit comments