|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- Intersection of normal subgroups |
| 3 | +-- |
| 4 | +-- The Agda standard library |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --safe --cubical-compatible #-} |
| 8 | + |
| 9 | +open import Algebra.Bundles |
| 10 | + |
| 11 | +module Algebra.NormalSubgroup.Construct.Intersection {c ℓ} (G : Group c ℓ) where |
| 12 | + |
| 13 | +open Group G |
| 14 | + |
| 15 | +open import Algebra.NormalSubgroup G |
| 16 | +open import Data.Product.Base |
| 17 | +open import Function.Base |
| 18 | +open import Level |
| 19 | +open import Relation.Binary.Reasoning.Setoid setoid |
| 20 | + |
| 21 | +_∩_ : ∀ {c₁ ℓ₁ c₂ ℓ₂} → NormalSubgroup c₁ ℓ₁ → NormalSubgroup c₂ ℓ₂ → NormalSubgroup (ℓ ⊔ c₁ ⊔ c₂) ℓ₁ |
| 22 | +N ∩ M = record |
| 23 | + { N = record |
| 24 | + { Carrier = Σ[ (a , b) ∈ N.N.Carrier × M.N.Carrier ] N.ι a ≈ M.ι b |
| 25 | + ; _≈_ = N.N._≈_ on proj₁ on proj₁ |
| 26 | + ; _∙_ = λ ((xₙ , xₘ) , p) ((yₙ , yₘ) , q) → record |
| 27 | + { fst = xₙ N.N.∙ yₙ , xₘ M.N.∙ yₘ |
| 28 | + ; snd = begin |
| 29 | + N.ι (xₙ N.N.∙ yₙ) ≈⟨ N.ι.∙-homo xₙ yₙ ⟩ |
| 30 | + N.ι xₙ ∙ N.ι yₙ ≈⟨ ∙-cong p q ⟩ |
| 31 | + M.ι xₘ ∙ M.ι yₘ ≈⟨ M.ι.∙-homo xₘ yₘ ⟨ |
| 32 | + M.ι (xₘ M.N.∙ yₘ) ∎ |
| 33 | + } |
| 34 | + ; ε = record |
| 35 | + { fst = N.N.ε , M.N.ε |
| 36 | + ; snd = begin |
| 37 | + N.ι N.N.ε ≈⟨ N.ι.ε-homo ⟩ |
| 38 | + ε ≈⟨ M.ι.ε-homo ⟨ |
| 39 | + M.ι M.N.ε ∎ |
| 40 | + } |
| 41 | + ; _⁻¹ = λ ((n , m) , p) → record |
| 42 | + { fst = n N.N.⁻¹ , m M.N.⁻¹ |
| 43 | + ; snd = begin |
| 44 | + N.ι (n N.N.⁻¹) ≈⟨ N.ι.⁻¹-homo n ⟩ |
| 45 | + N.ι n ⁻¹ ≈⟨ ⁻¹-cong p ⟩ |
| 46 | + M.ι m ⁻¹ ≈⟨ M.ι.⁻¹-homo m ⟨ |
| 47 | + M.ι (m M.N.⁻¹) ∎ |
| 48 | + } |
| 49 | + } |
| 50 | + ; ι = λ ((n , _) , _) → N.ι n |
| 51 | + ; ι-monomorphism = record |
| 52 | + { isGroupHomomorphism = record |
| 53 | + { isMonoidHomomorphism = record |
| 54 | + { isMagmaHomomorphism = record |
| 55 | + { isRelHomomorphism = record |
| 56 | + { cong = N.ι.⟦⟧-cong |
| 57 | + } |
| 58 | + ; homo = λ ((x , _) , _) ((y , _) , _) → N.ι.∙-homo x y |
| 59 | + } |
| 60 | + ; ε-homo = N.ι.ε-homo |
| 61 | + } |
| 62 | + ; ⁻¹-homo = λ ((x , _) , _) → N.ι.⁻¹-homo x |
| 63 | + } |
| 64 | + ; injective = λ p → N.ι.injective p |
| 65 | + } |
| 66 | + ; normal = λ ((n , m) , p) g → record |
| 67 | + { fst = record |
| 68 | + { fst = proj₁ (N.normal n g) , proj₁ (M.normal m g) |
| 69 | + ; snd = begin |
| 70 | + N.ι (proj₁ (N.normal n g)) ≈⟨ proj₂ (N.normal n g) ⟨ |
| 71 | + g ∙ N.ι n ∙ g ⁻¹ ≈⟨ ∙-congʳ (∙-cong refl p) ⟩ |
| 72 | + g ∙ M.ι m ∙ g ⁻¹ ≈⟨ proj₂ (M.normal m g) ⟩ |
| 73 | + M.ι (proj₁ (M.normal m g)) ∎ |
| 74 | + } |
| 75 | + ; snd = proj₂ (N.normal n g) |
| 76 | + } |
| 77 | + } |
| 78 | + where |
| 79 | + module N = NormalSubgroup N |
| 80 | + module M = NormalSubgroup M |
0 commit comments