@@ -22,12 +22,12 @@ open import Relation.Binary.PropositionalEquality.Properties
2222open import Relation.Unary using (Pred)
2323
2424open import Algebra.Definitions {A = A} _≡_
25- import Algebra.Consequences.Setoid (setoid A) as Base
25+ import Algebra.Consequences.Setoid (setoid A) as SetoidConsequences
2626
2727------------------------------------------------------------------------
2828-- Re-export all proofs that don't require congruence or substitutivity
2929
30- open Base public
30+ open SetoidConsequences public
3131 hiding
3232 ( comm∧assoc⇒middleFour
3333 ; identity∧middleFour⇒assoc
@@ -63,12 +63,12 @@ module _ {_∙_ _⁻¹ ε} where
6363 assoc∧id∧invʳ⇒invˡ-unique : Associative _∙_ → Identity ε _∙_ →
6464 RightInverse ε _⁻¹ _∙_ →
6565 ∀ x y → (x ∙ y) ≡ ε → x ≡ (y ⁻¹)
66- assoc∧id∧invʳ⇒invˡ-unique = Base .assoc∧id∧invʳ⇒invˡ-unique (cong₂ _)
66+ assoc∧id∧invʳ⇒invˡ-unique = SetoidConsequences .assoc∧id∧invʳ⇒invˡ-unique (cong₂ _)
6767
6868 assoc∧id∧invˡ⇒invʳ-unique : Associative _∙_ → Identity ε _∙_ →
6969 LeftInverse ε _⁻¹ _∙_ →
7070 ∀ x y → (x ∙ y) ≡ ε → y ≡ (x ⁻¹)
71- assoc∧id∧invˡ⇒invʳ-unique = Base .assoc∧id∧invˡ⇒invʳ-unique (cong₂ _)
71+ assoc∧id∧invˡ⇒invʳ-unique = SetoidConsequences .assoc∧id∧invˡ⇒invʳ-unique (cong₂ _)
7272
7373------------------------------------------------------------------------
7474-- Ring-like structures
@@ -79,27 +79,27 @@ module _ {_+_ _*_ -_ 0#} where
7979 RightIdentity 0# _+_ → RightInverse 0# -_ _+_ →
8080 LeftZero 0# _*_
8181 assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ =
82- Base .assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_)
82+ SetoidConsequences .assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_)
8383
8484 assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ : Associative _+_ → _*_ DistributesOverˡ _+_ →
8585 RightIdentity 0# _+_ → RightInverse 0# -_ _+_ →
8686 RightZero 0# _*_
8787 assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ =
88- Base .assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_)
88+ SetoidConsequences .assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_)
8989
9090------------------------------------------------------------------------
9191-- Bisemigroup-like structures
9292
9393module _ {_∙_ _◦_ : Op₂ A} (∙-comm : Commutative _∙_) where
9494
9595 comm∧distrˡ⇒distrʳ : _∙_ DistributesOverˡ _◦_ → _∙_ DistributesOverʳ _◦_
96- comm∧distrˡ⇒distrʳ = Base .comm+distrˡ⇒distrʳ (cong₂ _) ∙-comm
96+ comm∧distrˡ⇒distrʳ = SetoidConsequences .comm+distrˡ⇒distrʳ (cong₂ _) ∙-comm
9797
9898 comm∧distrʳ⇒distrˡ : _∙_ DistributesOverʳ _◦_ → _∙_ DistributesOverˡ _◦_
99- comm∧distrʳ⇒distrˡ = Base .comm∧distrʳ⇒distrˡ (cong₂ _) ∙-comm
99+ comm∧distrʳ⇒distrˡ = SetoidConsequences .comm∧distrʳ⇒distrˡ (cong₂ _) ∙-comm
100100
101101 comm⇒sym[distribˡ] : ∀ x → Symmetric (λ y z → (x ◦ (y ∙ z)) ≡ ((x ◦ y) ∙ (x ◦ z)))
102- comm⇒sym[distribˡ] = Base .comm⇒sym[distribˡ] (cong₂ _◦_) ∙-comm
102+ comm⇒sym[distribˡ] = SetoidConsequences .comm⇒sym[distribˡ] (cong₂ _◦_) ∙-comm
103103
104104module _ {_∙_ _◦_ : Op₂ A}
105105 (∙-assoc : Associative _∙_)
@@ -108,7 +108,7 @@ module _ {_∙_ _◦_ : Op₂ A}
108108
109109 binomial-expansion : ∀ w x y z →
110110 ((w ∙ x) ◦ (y ∙ z)) ≡ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
111- binomial-expansion = Base .binomial-expansion {_∙_} {_◦_} (cong₂ _) ∙-assoc distrib
111+ binomial-expansion = SetoidConsequences .binomial-expansion {_∙_} {_◦_} (cong₂ _) ∙-assoc distrib
112112
113113------------------------------------------------------------------------
114114-- Middle-Four Exchange
@@ -117,17 +117,17 @@ module _ {_∙_ : Op₂ A} where
117117
118118 comm∧assoc⇒middleFour : Commutative _∙_ → Associative _∙_ →
119119 _∙_ MiddleFourExchange _∙_
120- comm∧assoc⇒middleFour = Base .comm∧assoc⇒middleFour (cong₂ _∙_)
120+ comm∧assoc⇒middleFour = SetoidConsequences .comm∧assoc⇒middleFour (cong₂ _∙_)
121121
122122 identity∧middleFour⇒assoc : {e : A} → Identity e _∙_ →
123123 _∙_ MiddleFourExchange _∙_ →
124124 Associative _∙_
125- identity∧middleFour⇒assoc = Base .identity∧middleFour⇒assoc (cong₂ _∙_)
125+ identity∧middleFour⇒assoc = SetoidConsequences .identity∧middleFour⇒assoc (cong₂ _∙_)
126126
127127 identity∧middleFour⇒comm : {_+_ : Op₂ A} {e : A} → Identity e _+_ →
128128 _∙_ MiddleFourExchange _+_ →
129129 Commutative _∙_
130- identity∧middleFour⇒comm = Base .identity∧middleFour⇒comm (cong₂ _∙_)
130+ identity∧middleFour⇒comm = SetoidConsequences .identity∧middleFour⇒comm (cong₂ _∙_)
131131
132132------------------------------------------------------------------------
133133-- Without Loss of Generality
@@ -136,13 +136,13 @@ module _ {p} {P : Pred A p} where
136136
137137 subst∧comm⇒sym : ∀ {f} (f-comm : Commutative f) →
138138 Symmetric (λ a b → P (f a b))
139- subst∧comm⇒sym = Base .subst∧comm⇒sym {P = P} subst
139+ subst∧comm⇒sym = SetoidConsequences .subst∧comm⇒sym {P = P} subst
140140
141141 wlog : ∀ {f} (f-comm : Commutative f) →
142142 ∀ {r} {_R_ : Rel _ r} → Total _R_ →
143143 (∀ a b → a R b → P (f a b)) →
144144 ∀ a b → P (f a b)
145- wlog = Base .wlog {P = P} subst
145+ wlog = SetoidConsequences .wlog {P = P} subst
146146
147147
148148------------------------------------------------------------------------
0 commit comments