Skip to content

Commit a54e0bc

Browse files
committed
fix: qualified module name
1 parent 91d4151 commit a54e0bc

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

src/Algebra/Consequences/Propositional.agda

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -22,12 +22,12 @@ open import Relation.Binary.PropositionalEquality.Properties
2222
open import Relation.Unary using (Pred)
2323

2424
open import Algebra.Definitions {A = A} _≡_
25-
import Algebra.Consequences.Setoid (setoid A) as Base
25+
import Algebra.Consequences.Setoid (setoid A) as SetoidConsequences
2626

2727
------------------------------------------------------------------------
2828
-- Re-export all proofs that don't require congruence or substitutivity
2929

30-
open Base public
30+
open SetoidConsequences public
3131
hiding
3232
( comm∧assoc⇒middleFour
3333
; identity∧middleFour⇒assoc
@@ -63,12 +63,12 @@ module _ {_∙_ _⁻¹ ε} where
6363
assoc∧id∧invʳ⇒invˡ-unique : Associative _∙_ Identity ε _∙_
6464
RightInverse ε _⁻¹ _∙_
6565
x y (x ∙ y) ≡ ε x ≡ (y ⁻¹)
66-
assoc∧id∧invʳ⇒invˡ-unique = Base.assoc∧id∧invʳ⇒invˡ-unique (cong₂ _)
66+
assoc∧id∧invʳ⇒invˡ-unique = SetoidConsequences.assoc∧id∧invʳ⇒invˡ-unique (cong₂ _)
6767

6868
assoc∧id∧invˡ⇒invʳ-unique : Associative _∙_ Identity ε _∙_
6969
LeftInverse ε _⁻¹ _∙_
7070
x y (x ∙ y) ≡ ε y ≡ (x ⁻¹)
71-
assoc∧id∧invˡ⇒invʳ-unique = Base.assoc∧id∧invˡ⇒invʳ-unique (cong₂ _)
71+
assoc∧id∧invˡ⇒invʳ-unique = SetoidConsequences.assoc∧id∧invˡ⇒invʳ-unique (cong₂ _)
7272

7373
------------------------------------------------------------------------
7474
-- Ring-like structures
@@ -79,27 +79,27 @@ module _ {_+_ _*_ -_ 0#} where
7979
RightIdentity 0# _+_ RightInverse 0# -_ _+_
8080
LeftZero 0# _*_
8181
assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ =
82-
Base.assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_)
82+
SetoidConsequences.assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ (cong₂ _+_) (cong₂ _*_)
8383

8484
assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ : Associative _+_ _*_ DistributesOverˡ _+_
8585
RightIdentity 0# _+_ RightInverse 0# -_ _+_
8686
RightZero 0# _*_
8787
assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ =
88-
Base.assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_)
88+
SetoidConsequences.assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ (cong₂ _+_) (cong₂ _*_)
8989

9090
------------------------------------------------------------------------
9191
-- Bisemigroup-like structures
9292

9393
module _ {_∙_ _◦_ : Op₂ A} (∙-comm : Commutative _∙_) where
9494

9595
comm∧distrˡ⇒distrʳ : _∙_ DistributesOverˡ _◦_ _∙_ DistributesOverʳ _◦_
96-
comm∧distrˡ⇒distrʳ = Base.comm+distrˡ⇒distrʳ (cong₂ _) ∙-comm
96+
comm∧distrˡ⇒distrʳ = SetoidConsequences.comm+distrˡ⇒distrʳ (cong₂ _) ∙-comm
9797

9898
comm∧distrʳ⇒distrˡ : _∙_ DistributesOverʳ _◦_ _∙_ DistributesOverˡ _◦_
99-
comm∧distrʳ⇒distrˡ = Base.comm∧distrʳ⇒distrˡ (cong₂ _) ∙-comm
99+
comm∧distrʳ⇒distrˡ = SetoidConsequences.comm∧distrʳ⇒distrˡ (cong₂ _) ∙-comm
100100

101101
comm⇒sym[distribˡ] : x Symmetric (λ y z (x ◦ (y ∙ z)) ≡ ((x ◦ y) ∙ (x ◦ z)))
102-
comm⇒sym[distribˡ] = Base.comm⇒sym[distribˡ] (cong₂ _◦_) ∙-comm
102+
comm⇒sym[distribˡ] = SetoidConsequences.comm⇒sym[distribˡ] (cong₂ _◦_) ∙-comm
103103

104104
module _ {_∙_ _◦_ : Op₂ A}
105105
(∙-assoc : Associative _∙_)
@@ -108,7 +108,7 @@ module _ {_∙_ _◦_ : Op₂ A}
108108

109109
binomial-expansion : w x y z
110110
((w ∙ x) ◦ (y ∙ z)) ≡ ((((w ◦ y) ∙ (w ◦ z)) ∙ (x ◦ y)) ∙ (x ◦ z))
111-
binomial-expansion = Base.binomial-expansion {_∙_} {_◦_} (cong₂ _) ∙-assoc distrib
111+
binomial-expansion = SetoidConsequences.binomial-expansion {_∙_} {_◦_} (cong₂ _) ∙-assoc distrib
112112

113113
------------------------------------------------------------------------
114114
-- Middle-Four Exchange
@@ -117,17 +117,17 @@ module _ {_∙_ : Op₂ A} where
117117

118118
comm∧assoc⇒middleFour : Commutative _∙_ Associative _∙_
119119
_∙_ MiddleFourExchange _∙_
120-
comm∧assoc⇒middleFour = Base.comm∧assoc⇒middleFour (cong₂ _∙_)
120+
comm∧assoc⇒middleFour = SetoidConsequences.comm∧assoc⇒middleFour (cong₂ _∙_)
121121

122122
identity∧middleFour⇒assoc : {e : A} Identity e _∙_
123123
_∙_ MiddleFourExchange _∙_
124124
Associative _∙_
125-
identity∧middleFour⇒assoc = Base.identity∧middleFour⇒assoc (cong₂ _∙_)
125+
identity∧middleFour⇒assoc = SetoidConsequences.identity∧middleFour⇒assoc (cong₂ _∙_)
126126

127127
identity∧middleFour⇒comm : {_+_ : Op₂ A} {e : A} Identity e _+_
128128
_∙_ MiddleFourExchange _+_
129129
Commutative _∙_
130-
identity∧middleFour⇒comm = Base.identity∧middleFour⇒comm (cong₂ _∙_)
130+
identity∧middleFour⇒comm = SetoidConsequences.identity∧middleFour⇒comm (cong₂ _∙_)
131131

132132
------------------------------------------------------------------------
133133
-- Without Loss of Generality
@@ -136,13 +136,13 @@ module _ {p} {P : Pred A p} where
136136

137137
subst∧comm⇒sym : {f} (f-comm : Commutative f)
138138
Symmetric (λ a b P (f a b))
139-
subst∧comm⇒sym = Base.subst∧comm⇒sym {P = P} subst
139+
subst∧comm⇒sym = SetoidConsequences.subst∧comm⇒sym {P = P} subst
140140

141141
wlog : {f} (f-comm : Commutative f)
142142
{r} {_R_ : Rel _ r} Total _R_
143143
( a b a R b P (f a b))
144144
a b P (f a b)
145-
wlog = Base.wlog {P = P} subst
145+
wlog = SetoidConsequences.wlog {P = P} subst
146146

147147

148148
------------------------------------------------------------------------

0 commit comments

Comments
 (0)