We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent c05773b commit b707d83Copy full SHA for b707d83
src/Algebra/Construct/Sub/Ring/Ideal.agda
@@ -12,15 +12,14 @@ module Algebra.Construct.Sub.Ring.Ideal {c ℓ} (R : Ring c ℓ) where
12
13
open import Algebra.Module.Construct.Sub.Bimodule using (Subbimodule)
14
open import Algebra.Module.Construct.TensorUnit using (bimodule)
15
-open import Level
+open import Level using (suc; _⊔_)
16
17
------------------------------------------------------------------------
18
-- Definition
19
-- a (two sided) ideal is exactly a subbimodule of R considered as a bimodule over itself
20
21
record Ideal c′ ℓ′ : Set (c ⊔ ℓ ⊔ suc (c′ ⊔ ℓ′)) where
22
field
23
-
24
subbimodule : Subbimodule {R = R} bimodule c′ ℓ′
25
26
open Subbimodule subbimodule public
0 commit comments