@@ -10,11 +10,12 @@ module Data.List.Relation.Binary.Infix.Heterogeneous.Properties where
10
10
11
11
open import Level using (Level; _⊔_)
12
12
open import Data.Bool.Base using (true; false)
13
- open import Data.Empty using (⊥-elim)
14
13
open import Data.List.Base as List using (List; []; _∷_; length; map; filter; replicate)
15
14
open import Data.List.Relation.Binary.Infix.Heterogeneous
16
15
open import Data.List.Relation.Binary.Prefix.Heterogeneous as Prefix
17
16
using (Prefix; []; _∷_)
17
+ open import Data.List.Relation.Binary.Pointwise.Base as Pointwise
18
+ using (Pointwise)
18
19
import Data.List.Relation.Binary.Prefix.Heterogeneous.Properties as Prefix
19
20
open import Data.List.Relation.Binary.Suffix.Heterogeneous as Suffix
20
21
using (Suffix; here; there)
@@ -28,8 +29,8 @@ open import Relation.Unary as U using (Pred)
28
29
open import Relation.Binary.Core using (REL; _⇒_)
29
30
open import Relation.Binary.Definitions using (Decidable; Trans; Antisym)
30
31
open import Relation.Binary.PropositionalEquality.Core using (_≢_; refl; cong)
31
- open import Data.List. Relation.Binary.Pointwise.Base as Pointwise
32
- using (Pointwise)
32
+ open import Relation.Nullary.Negation.Core using (contradiction)
33
+
33
34
34
35
35
36
private
@@ -99,20 +100,20 @@ module _ {c t} {C : Set c} {T : REL A C t} where
99
100
antisym : Antisym R S T → Antisym (Infix R) (Infix S) (Pointwise T)
100
101
antisym asym (here p) (here q) = Prefix.antisym asym p q
101
102
antisym asym {i = a ∷ as} {j = bs} p@(here _) (there q)
102
- = ⊥-elim $′ ℕ.<-irrefl refl $′ begin-strict
103
+ = contradiction ( begin-strict
103
104
length as <⟨ length-mono p ⟩
104
105
length bs ≤⟨ length-mono q ⟩
105
- length as ∎ where open ℕ.≤-Reasoning
106
+ length as ∎) (ℕ.<-irrefl refl) where open ℕ.≤-Reasoning
106
107
antisym asym {i = as} {j = b ∷ bs} (there p) q@(here _)
107
- = ⊥-elim $′ ℕ.<-irrefl refl $′ begin-strict
108
+ = contradiction ( begin-strict
108
109
length bs <⟨ length-mono q ⟩
109
110
length as ≤⟨ length-mono p ⟩
110
- length bs ∎ where open ℕ.≤-Reasoning
111
+ length bs ∎) (ℕ.<-irrefl refl) where open ℕ.≤-Reasoning
111
112
antisym asym {i = a ∷ as} {j = b ∷ bs} (there p) (there q)
112
- = ⊥-elim $′ ℕ.<-irrefl refl $′ begin-strict
113
+ = contradiction ( begin-strict
113
114
length as <⟨ length-mono p ⟩
114
115
length bs <⟨ length-mono q ⟩
115
- length as ∎ where open ℕ.≤-Reasoning
116
+ length as ∎) (ℕ.<-irrefl refl) where open ℕ.≤-Reasoning
116
117
117
118
------------------------------------------------------------------------
118
119
-- map
0 commit comments