|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Definition of sub-bimodules |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +open import Algebra.Bundles using (Ring) |
| 10 | +open import Algebra.Module.Bundles using (Bimodule; RawBimodule) |
| 11 | + |
| 12 | +module Algebra.Module.Construct.Sub.Bimodule |
| 13 | + {cr ℓr cs ℓs cm ℓm} {R : Ring cr ℓr} {S : Ring cs ℓs} (M : Bimodule R S cm ℓm) |
| 14 | + where |
| 15 | + |
| 16 | +open import Algebra.Module.Morphism.Structures using (IsBimoduleMonomorphism) |
| 17 | +open import Algebra.Module.Morphism.BimoduleMonomorphism using (isBimodule) |
| 18 | +open import Level using (suc; _⊔_) |
| 19 | + |
| 20 | +private |
| 21 | + module R = Ring R |
| 22 | + module S = Ring S |
| 23 | + module M = Bimodule M |
| 24 | + |
| 25 | +open import Algebra.Construct.Sub.AbelianGroup M.+ᴹ-abelianGroup |
| 26 | + as AbelianSubgroup |
| 27 | + using (Subgroup) |
| 28 | + |
| 29 | +------------------------------------------------------------------------ |
| 30 | +-- Definition |
| 31 | + |
| 32 | +record Subbimodule cm′ ℓm′ : Set (cr ⊔ cs ⊔ cm ⊔ ℓm ⊔ suc (cm′ ⊔ ℓm′)) where |
| 33 | + field |
| 34 | + domain : RawBimodule R.Carrier S.Carrier cm′ ℓm′ |
| 35 | + ι : _ → M.Carrierᴹ |
| 36 | + ι-monomorphism : IsBimoduleMonomorphism domain M.rawBimodule ι |
| 37 | + |
| 38 | + module ι = IsBimoduleMonomorphism ι-monomorphism |
| 39 | + |
| 40 | + bimodule : Bimodule R S _ _ |
| 41 | + bimodule = record |
| 42 | + { isBimodule = isBimodule ι-monomorphism R.isRing S.isRing M.isBimodule } |
| 43 | + |
| 44 | + open Bimodule bimodule public |
| 45 | + |
| 46 | +-- Additionally, have Abelian (hence: Normal) subgroups of M.+ᴹ-abelianGroup |
| 47 | + |
| 48 | + subgroup : Subgroup cm′ ℓm′ |
| 49 | + subgroup = record { ι-monomorphism = ι.+ᴹ-isGroupMonomorphism } |
| 50 | + |
| 51 | + isNormal = AbelianSubgroup.isNormal subgroup |
| 52 | + |
| 53 | + normalSubgroup = AbelianSubgroup.normalSubgroup subgroup |
0 commit comments