@@ -94,6 +94,10 @@ Deprecated names
94
94
*-+-commutativeSemiring ↦ +-*-commutativeSemiring
95
95
*-+-isSemiringWithoutAnnihilatingZero ↦ +-*-isSemiringWithoutAnnihilatingZero
96
96
```
97
+ * In ̀Function.Basè:
98
+ ```
99
+ *_-[_]-_ ↦ _-⟪_⟫-_
100
+ ```
97
101
98
102
* ` Data.List.Relation.Unary.Any.any ` to ` Data.List.Relation.Unary.Any.any? `
99
103
* ` Data.List.Relation.Unary.All.all ` to ` Data.List.Relation.Unary.All.all? `
@@ -243,17 +247,17 @@ Other minor additions
243
247
244
248
* Added new properties to `Data.Fin.Properties`:
245
249
```agda
246
- toℕ≤n : (i : Fin n) → toℕ i ℕ.≤ n
247
- ≤fromℕ : (i : Fin (ℕ.suc n)) → i ≤ fromℕ n
250
+ toℕ≤n : (i : Fin n) → toℕ i ℕ.≤ n
251
+ ≤fromℕ : (i : Fin (ℕ.suc n)) → i ≤ fromℕ n
248
252
fromℕ<-irrelevant : m ≡ n → (m<o : m ℕ.< o) → (n<o : n ℕ.< o) → fromℕ< m<o ≡ fromℕ< n<o
249
- fromℕ<-injective : fromℕ< m<o ≡ fromℕ< n<o → m ≡ n
250
- inject₁ℕ< : (i : Fin n) → toℕ (inject₁ i) ℕ.< n
251
- inject₁ℕ≤ : (i : Fin n) → toℕ (inject₁ i) ℕ.≤ n
252
- ≤̄⇒inject₁< : i' ≤ i → inject₁ i' < suc i
253
- ℕ<⇒inject₁< : toℕ i' ℕ.< toℕ i → inject₁ i' < i
254
- toℕ-lower₁ : (p : m ≢ toℕ x) → toℕ (lower₁ x p) ≡ toℕ x
253
+ fromℕ<-injective : fromℕ< m<o ≡ fromℕ< n<o → m ≡ n
254
+ inject₁ℕ< : (i : Fin n) → toℕ (inject₁ i) ℕ.< n
255
+ inject₁ℕ≤ : (i : Fin n) → toℕ (inject₁ i) ℕ.≤ n
256
+ ≤̄⇒inject₁< : i' ≤ i → inject₁ i' < suc i
257
+ ℕ<⇒inject₁< : toℕ i' ℕ.< toℕ i → inject₁ i' < i
258
+ toℕ-lower₁ : (p : m ≢ toℕ x) → toℕ (lower₁ x p) ≡ toℕ x
255
259
inject₁≡⇒lower₁≡ : (≢p : n ≢ (toℕ i')) → inject₁ i ≡ i' → lower₁ i' ≢p ≡ i
256
- pred< : pred i < i
260
+ pred< : pred i < i
257
261
```
258
262
259
263
* Added new types and constructors to ` Data.Integer.Base ` :
@@ -356,10 +360,10 @@ Other minor additions
356
360
cartesianProductWith⁻ : (∀ {x y} → R (f x y) → P x × Q y) → Any R (cartesianProductWith f xs ys) → Any P xs × Any Q ys
357
361
cartesianProduct⁺ : Any P xs → Any Q ys → Any (P ⟨×⟩ Q) (cartesianProduct xs ys)
358
362
cartesianProduct⁻ : Any (P ⟨×⟩ Q) (cartesianProduct xs ys) → Any P xs × Any Q ys
359
- reverseAcc⁺ : ∀ acc xs → Any P acc ⊎ Any P xs → Any P (reverseAcc acc xs)
360
- reverseAcc⁻ : ∀ acc xs → Any P (reverseAcc acc xs) -> Any P acc ⊎ Any P xs
361
- reverse⁺ : Any P xs → Any P (reverse xs)
362
- reverse⁻ : Any P (reverse xs) → Any P xs
363
+ reverseAcc⁺ : ∀ acc xs → Any P acc ⊎ Any P xs → Any P (reverseAcc acc xs)
364
+ reverseAcc⁻ : ∀ acc xs → Any P (reverseAcc acc xs) -> Any P acc ⊎ Any P xs
365
+ reverse⁺ : Any P xs → Any P (reverse xs)
366
+ reverse⁻ : Any P (reverse xs) → Any P xs
363
367
```
364
368
365
369
* Added new proofs to ` Data.List.Relation.Unary.Unique.Propositional.Properties ` :
@@ -410,7 +414,7 @@ Other minor additions
410
414
* Added new functions to ` Data.String.Base ` :
411
415
``` agda
412
416
wordsBy : Decidable P → String → List String
413
- words : String → List String
417
+ words : String → List String
414
418
```
415
419
416
420
* Added new types and constructors to ` Data.Nat.Base ` :
@@ -485,9 +489,9 @@ Other minor additions
485
489
486
490
* Added new functions to ` Function.Base ` :
487
491
``` agda
488
- _∘₂_ : (f : {x : A₁} → {y : A₂ x} → (z : B x y) → C z)
489
- → (g : (x : A₁) → (y : A₂ x) → B x y)
490
- → ((x : A₁) → (y : A₂ x) → C (g x y))
492
+ _∘₂_ : (f : {x : A₁} → {y : A₂ x} → (z : B x y) → C z)
493
+ → (g : (x : A₁) → (y : A₂ x) → B x y)
494
+ → ((x : A₁) → (y : A₂ x) → C (g x y))
491
495
492
496
_∘₂′_ : (C → D) → (A → B → C) → (A → B → D)
493
497
```
@@ -499,55 +503,72 @@ Other minor additions
499
503
500
504
* Added new functions to ` Data.Fin.Base ` :
501
505
``` agda
502
- quotRem : ∀ {n} k → Fin (n ℕ.* k) → Fin k × Fin n
506
+ quotRem : ∀ {n} k → Fin (n ℕ.* k) → Fin k × Fin n
503
507
opposite : ∀ {n} → Fin n → Fin n
504
508
```
505
509
506
510
* Added new proofs to ` Data.Fin.Properties ` :
507
511
``` agda
508
- splitAt-< : ∀ m {n} i → (i<m : toℕ i ℕ.< m) → splitAt m {n} i ≡ inj₁ (fromℕ< i<m)
509
- splitAt-≥ : ∀ m {n} i → (i≥m : toℕ i ℕ.≥ m) → splitAt m {n} i ≡ inj₂ (reduce≥ i i≥m)
512
+ splitAt-< : ∀ m {n} i → (i<m : toℕ i ℕ.< m) → splitAt m {n} i ≡ inj₁ (fromℕ< i<m)
513
+ splitAt-≥ : ∀ m {n} i → (i≥m : toℕ i ℕ.≥ m) → splitAt m {n} i ≡ inj₂ (reduce≥ i i≥m)
510
514
inject≤-injective : ∀ (n≤m n≤m′ : n ℕ.≤ m) x y → inject≤ x n≤m ≡ inject≤ y n≤m′ → x ≡ y
511
515
```
512
516
513
517
* Added new proofs to ` Data.Vec.Properties ` :
514
518
``` agda
515
- unfold-take : ∀ n {m} x (xs : Vec A (n + m)) → take (suc n) (x ∷ xs) ≡ x ∷ take n xs
516
- unfold-drop : ∀ n {m} x (xs : Vec A (n + m)) → drop (suc n) (x ∷ xs) ≡ drop n xs
519
+ unfold-take : ∀ n {m} x (xs : Vec A (n + m)) → take (suc n) (x ∷ xs) ≡ x ∷ take n xs
520
+ unfold-drop : ∀ n {m} x (xs : Vec A (n + m)) → drop (suc n) (x ∷ xs) ≡ drop n xs
517
521
lookup-inject≤-take : ∀ m {n} (m≤m+n : m ≤ m + n) (i : Fin m) (xs : Vec A (m + n)) →
518
522
lookup xs (Fin.inject≤ i m≤m+n) ≡ lookup (take m xs) i
519
523
```
520
524
521
525
* Added new functions to ` Data.Vec.Functional ` :
522
526
``` agda
523
- length : ∀ {n} → Vector A n → ℕ
524
- insert : ∀ {n} → Vector A n → Fin (suc n) → A → Vector A (suc n)
525
- updateAt : ∀ {n} → Fin n → (A → A) → Vector A n → Vector A n
526
- _++_ : ∀ {m n} → Vector A m → Vector A n → Vector A (m ℕ.+ n)
527
- concat : ∀ {m n} → Vector (Vector A m) n → Vector A (n ℕ.* m)
528
- _>>=_ : ∀ {m n} → Vector A m → (A → Vector B n) → Vector B (m ℕ.* n)
527
+ length : ∀ {n} → Vector A n → ℕ
528
+ insert : ∀ {n} → Vector A n → Fin (suc n) → A → Vector A (suc n)
529
+ updateAt : ∀ {n} → Fin n → (A → A) → Vector A n → Vector A n
530
+ _++_ : ∀ {m n} → Vector A m → Vector A n → Vector A (m ℕ.+ n)
531
+ concat : ∀ {m n} → Vector (Vector A m) n → Vector A (n ℕ.* m)
532
+ _>>=_ : ∀ {m n} → Vector A m → (A → Vector B n) → Vector B (m ℕ.* n)
529
533
unzipWith : ∀ {n} → (A → B × C) → Vector A n → Vector B n × Vector C n
530
- unzip : ∀ {n} → Vector (A × B) n → Vector A n × Vector B n
531
- take : ∀ m {n} → Vector A (m ℕ.+ n) → Vector A m
532
- drop : ∀ m {n} → Vector A (m ℕ.+ n) → Vector A n
533
- reverse : ∀ {n} → Vector A n → Vector A n
534
- init : ∀ {n} → Vector A (suc n) → Vector A n
535
- last : ∀ {n} → Vector A (suc n) → A
534
+ unzip : ∀ {n} → Vector (A × B) n → Vector A n × Vector B n
535
+ take : ∀ m {n} → Vector A (m ℕ.+ n) → Vector A m
536
+ drop : ∀ m {n} → Vector A (m ℕ.+ n) → Vector A n
537
+ reverse : ∀ {n} → Vector A n → Vector A n
538
+ init : ∀ {n} → Vector A (suc n) → Vector A n
539
+ last : ∀ {n} → Vector A (suc n) → A
536
540
transpose : ∀ {m n} → Vector (Vector A n) m → Vector (Vector A m) n
537
541
```
538
542
543
+ * Added a new simple function in ` Function.Base ` :
544
+ ``` agda
545
+ constᵣ : A → B → B
546
+ ```
547
+
548
+ * Added new compositions with a binary function in ` Function.Base ` :
549
+ ``` agda
550
+ _-⟪_∣ : (A → B → C) → (C → B → D) → (A → B → D)
551
+ ∣_⟫-_ : (A → C → D) → (A → B → C) → (A → B → D)
552
+ _-⟨_∣ : (A → C) → (C → B → D) → (A → B → D)
553
+ ∣_⟩-_ : (A → C → D) → (B → C) → (A → B → D)
554
+ _-⟪_⟩-_ : (A → B → C) → (C → D → E) → (B → D) → (A → B → E)
555
+ _-⟨_⟫-_ : (A → C) → (C → D → E) → (A → B → D) → (A → B → E)
556
+ _-⟨_⟩-_ : (A → C) → (C → D → E) → (B → D) → (A → B → E)
557
+ _on₂_ : (C → C → D) → (A → B → C) → (A → B → D)
558
+ ```
559
+
539
560
* Added new functions to ` Data.Vec.Relation.Unary.All ` :
540
561
``` agda
541
562
reduce : (f : ∀ {x} → P x → B) → All P xs → Vec B n
542
563
```
543
564
544
565
* Added new proofs to ` Data.Vec.Relation.Unary.All.Properties ` :
545
566
``` agda
546
- All-swap : ∀ {xs ys} → All (λ x → All (x ~_) ys) xs → All (λ y → All (_~ y) xs) ys
567
+ All-swap : ∀ {xs ys} → All (λ x → All (x ~_) ys) xs → All (λ y → All (_~ y) xs) ys
547
568
tabulate⁺ : ∀ {f : Fin n → A} → (∀ i → P (f i)) → All P (tabulate f)
548
569
tabulate⁻ : ∀ {f : Fin n → A} → All P (tabulate f) → (∀ i → P (f i))
549
- drop⁺ : ∀ {n} m {xs} → All P {m + n} xs → All P {n} (drop m xs)
550
- take⁺ : ∀ {n} m {xs} → All P {m + n} xs → All P {m} (take m xs)
570
+ drop⁺ : ∀ {n} m {xs} → All P {m + n} xs → All P {n} (drop m xs)
571
+ take⁺ : ∀ {n} m {xs} → All P {m + n} xs → All P {m} (take m xs)
551
572
```
552
573
553
574
* Added new proofs to ` Data.Vec.Membership.Propositional.Properties ` :
0 commit comments