|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- The projection morphisms for algebraic structures arising from the |
| 5 | +-- direct product construction |
| 6 | +------------------------------------------------------------------------ |
| 7 | + |
| 8 | +{-# OPTIONS --safe --cubical-compatible #-} |
| 9 | + |
| 10 | +module Algebra.Morphism.Construct.DirectProduct where |
| 11 | + |
| 12 | +open import Algebra.Bundles using (RawMagma; RawMonoid) |
| 13 | +open import Algebra.Construct.DirectProduct using (rawMagma; rawMonoid) |
| 14 | +open import Algebra.Morphism.Structures |
| 15 | + using ( module MagmaMorphisms |
| 16 | + ; module MonoidMorphisms |
| 17 | + ) |
| 18 | +open import Data.Product as Product |
| 19 | + using (_,_) |
| 20 | +open import Level using (Level) |
| 21 | +open import Relation.Binary.Definitions using (Reflexive) |
| 22 | +import Relation.Binary.Morphism.Construct.Product as RP |
| 23 | + |
| 24 | +private |
| 25 | + variable |
| 26 | + a b c ℓ₁ ℓ₂ ℓ₃ : Level |
| 27 | + |
| 28 | +------------------------------------------------------------------------ |
| 29 | +-- Magmas |
| 30 | + |
| 31 | +module Magma (M : RawMagma a ℓ₁) (N : RawMagma b ℓ₂) where |
| 32 | + open MagmaMorphisms |
| 33 | + |
| 34 | + private |
| 35 | + module M = RawMagma M |
| 36 | + module N = RawMagma N |
| 37 | + |
| 38 | + module Proj₁ (refl : Reflexive M._≈_) where |
| 39 | + |
| 40 | + isMagmaHomomorphism : IsMagmaHomomorphism (rawMagma M N) M Product.proj₁ |
| 41 | + isMagmaHomomorphism = record |
| 42 | + { isRelHomomorphism = RP.proj₁ |
| 43 | + ; homo = λ _ _ → refl |
| 44 | + } |
| 45 | + |
| 46 | + module Proj₂ (refl : Reflexive N._≈_) where |
| 47 | + |
| 48 | + isMagmaHomomorphism : IsMagmaHomomorphism (rawMagma M N) N Product.proj₂ |
| 49 | + isMagmaHomomorphism = record |
| 50 | + { isRelHomomorphism = RP.proj₂ |
| 51 | + ; homo = λ _ _ → refl |
| 52 | + } |
| 53 | + |
| 54 | + module Pair (P : RawMagma c ℓ₃) where |
| 55 | + |
| 56 | + isMagmaHomomorphism : ∀ {f g} → |
| 57 | + IsMagmaHomomorphism P M f → |
| 58 | + IsMagmaHomomorphism P N g → |
| 59 | + IsMagmaHomomorphism P (rawMagma M N) (Product.< f , g >) |
| 60 | + isMagmaHomomorphism F G = record |
| 61 | + { isRelHomomorphism = RP.< F.isRelHomomorphism , G.isRelHomomorphism > |
| 62 | + ; homo = λ x y → F.homo x y , G.homo x y |
| 63 | + } |
| 64 | + where |
| 65 | + module F = IsMagmaHomomorphism F |
| 66 | + module G = IsMagmaHomomorphism G |
| 67 | + |
| 68 | +-- Package for export |
| 69 | +module Magma-Export {M : RawMagma a ℓ₁} {N : RawMagma b ℓ₂} where |
| 70 | + open Magma |
| 71 | + |
| 72 | + private |
| 73 | + module M = RawMagma M |
| 74 | + module N = RawMagma N |
| 75 | + |
| 76 | + module _ {refl : Reflexive M._≈_} where |
| 77 | + proj₁ = Proj₁.isMagmaHomomorphism M M refl |
| 78 | + |
| 79 | + module _ {refl : Reflexive N._≈_} where |
| 80 | + proj₂ = Proj₂.isMagmaHomomorphism M N refl |
| 81 | + |
| 82 | + module _ {P : RawMagma c ℓ₃} where |
| 83 | + <_,_> = Pair.isMagmaHomomorphism M N P |
| 84 | + |
| 85 | +------------------------------------------------------------------------ |
| 86 | +-- Monoids |
| 87 | + |
| 88 | +module Monoid (M : RawMonoid a ℓ₁) (N : RawMonoid b ℓ₂) where |
| 89 | + open MonoidMorphisms |
| 90 | + |
| 91 | + private |
| 92 | + module M = RawMonoid M |
| 93 | + module N = RawMonoid N |
| 94 | + |
| 95 | + module Proj₁ (refl : Reflexive M._≈_) where |
| 96 | + |
| 97 | + isMonoidHomomorphism : IsMonoidHomomorphism (rawMonoid M N) M Product.proj₁ |
| 98 | + isMonoidHomomorphism = record |
| 99 | + { isMagmaHomomorphism = Magma.Proj₁.isMagmaHomomorphism M.rawMagma N.rawMagma refl |
| 100 | + ; ε-homo = refl |
| 101 | + } |
| 102 | + |
| 103 | + module Proj₂ (refl : Reflexive N._≈_) where |
| 104 | + |
| 105 | + isMonoidHomomorphism : IsMonoidHomomorphism (rawMonoid M N) N Product.proj₂ |
| 106 | + isMonoidHomomorphism = record |
| 107 | + { isMagmaHomomorphism = Magma.Proj₂.isMagmaHomomorphism M.rawMagma N.rawMagma refl |
| 108 | + ; ε-homo = refl |
| 109 | + } |
| 110 | + |
| 111 | + module Pair (P : RawMonoid c ℓ₃) where |
| 112 | + |
| 113 | + private |
| 114 | + module P = RawMonoid P |
| 115 | + |
| 116 | + isMonoidHomomorphism : ∀ {f g} → |
| 117 | + IsMonoidHomomorphism P M f → |
| 118 | + IsMonoidHomomorphism P N g → |
| 119 | + IsMonoidHomomorphism P (rawMonoid M N) (Product.< f , g >) |
| 120 | + isMonoidHomomorphism F G = record |
| 121 | + { isMagmaHomomorphism = Magma.Pair.isMagmaHomomorphism M.rawMagma N.rawMagma P.rawMagma F.isMagmaHomomorphism G.isMagmaHomomorphism |
| 122 | + ; ε-homo = F.ε-homo , G.ε-homo } |
| 123 | + where |
| 124 | + module F = IsMonoidHomomorphism F |
| 125 | + module G = IsMonoidHomomorphism G |
| 126 | + |
| 127 | +-- Package for export |
| 128 | +module Monoid-Export {M : RawMonoid a ℓ₁} {N : RawMonoid b ℓ₂} where |
| 129 | + open Monoid |
| 130 | + |
| 131 | + private |
| 132 | + module M = RawMonoid M |
| 133 | + module N = RawMonoid N |
| 134 | + |
| 135 | + module _ {refl : Reflexive M._≈_} where |
| 136 | + proj₁ = Proj₁.isMonoidHomomorphism M M refl |
| 137 | + |
| 138 | + module _ {refl : Reflexive N._≈_} where |
| 139 | + proj₂ = Proj₂.isMonoidHomomorphism M N refl |
| 140 | + |
| 141 | + module _ {P : RawMonoid c ℓ₃} where |
| 142 | + <_,_> = Pair.isMonoidHomomorphism M N P |
0 commit comments