@@ -82,28 +82,28 @@ module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {≈₃ : Rel C ℓ₃}
82
82
{ cong = G.cong ∘ F.cong
83
83
; isEquivalence₁ = F.isEquivalence₁
84
84
; isEquivalence₂ = G.isEquivalence₂
85
- } where module F = IsCongruent _ _ f-cong; module G = IsCongruent _ _ g-cong
85
+ } where module F = IsCongruent f-cong; module G = IsCongruent g-cong
86
86
87
87
isInjection : IsInjection ≈₁ ≈₂ f → IsInjection ≈₂ ≈₃ g →
88
88
IsInjection ≈₁ ≈₃ (g ∘ f)
89
89
isInjection f-inj g-inj = record
90
90
{ isCongruent = isCongruent F.isCongruent G.isCongruent
91
91
; injective = injective ≈₁ ≈₂ ≈₃ F.injective G.injective
92
- } where module F = IsInjection _ _ f-inj; module G = IsInjection _ _ g-inj
92
+ } where module F = IsInjection f-inj; module G = IsInjection g-inj
93
93
94
94
isSurjection : IsSurjection ≈₁ ≈₂ f → IsSurjection ≈₂ ≈₃ g →
95
95
IsSurjection ≈₁ ≈₃ (g ∘ f)
96
96
isSurjection f-surj g-surj = record
97
97
{ isCongruent = isCongruent F.isCongruent G.isCongruent
98
98
; surjective = surjective ≈₁ ≈₂ ≈₃ G.Eq₂.trans G.cong F.surjective G.surjective
99
- } where module F = IsSurjection _ _ f-surj; module G = IsSurjection _ _ g-surj
99
+ } where module F = IsSurjection f-surj; module G = IsSurjection g-surj
100
100
101
101
isBijection : IsBijection ≈₁ ≈₂ f → IsBijection ≈₂ ≈₃ g →
102
102
IsBijection ≈₁ ≈₃ (g ∘ f)
103
103
isBijection f-bij g-bij = record
104
104
{ isInjection = isInjection F.isInjection G.isInjection
105
105
; surjective = surjective ≈₁ ≈₂ ≈₃ G.Eq₂.trans G.cong F.surjective G.surjective
106
- } where module F = IsBijection _ _ f-bij; module G = IsBijection _ _ g-bij
106
+ } where module F = IsBijection f-bij; module G = IsBijection g-bij
107
107
108
108
module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {≈₃ : Rel C ℓ₃}
109
109
{f : A → B} {g : B → C} {f⁻¹ : B → A} {g⁻¹ : C → B}
@@ -115,22 +115,22 @@ module _ {≈₁ : Rel A ℓ₁} {≈₂ : Rel B ℓ₂} {≈₃ : Rel C ℓ₃}
115
115
{ isCongruent = isCongruent F.isCongruent G.isCongruent
116
116
; cong₂ = congruent ≈₃ ≈₂ ≈₁ G.cong₂ F.cong₂
117
117
; inverseˡ = inverseˡ ≈₁ ≈₂ ≈₃ f _ G.Eq₂.trans G.cong₁ F.inverseˡ G.inverseˡ
118
- } where module F = IsLeftInverse _ _ f-invˡ; module G = IsLeftInverse _ _ g-invˡ
118
+ } where module F = IsLeftInverse f-invˡ; module G = IsLeftInverse g-invˡ
119
119
120
120
isRightInverse : IsRightInverse ≈₁ ≈₂ f f⁻¹ → IsRightInverse ≈₂ ≈₃ g g⁻¹ →
121
121
IsRightInverse ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
122
122
isRightInverse f-invʳ g-invʳ = record
123
123
{ isCongruent = isCongruent F.isCongruent G.isCongruent
124
124
; cong₂ = congruent ≈₃ ≈₂ ≈₁ G.cong₂ F.cong₂
125
125
; inverseʳ = inverseʳ ≈₁ ≈₂ ≈₃ _ g⁻¹ F.Eq₁.trans F.cong₂ F.inverseʳ G.inverseʳ
126
- } where module F = IsRightInverse _ _ f-invʳ; module G = IsRightInverse _ _ g-invʳ
126
+ } where module F = IsRightInverse f-invʳ; module G = IsRightInverse g-invʳ
127
127
128
128
isInverse : IsInverse ≈₁ ≈₂ f f⁻¹ → IsInverse ≈₂ ≈₃ g g⁻¹ →
129
129
IsInverse ≈₁ ≈₃ (g ∘ f) (f⁻¹ ∘ g⁻¹)
130
130
isInverse f-inv g-inv = record
131
131
{ isLeftInverse = isLeftInverse F.isLeftInverse G.isLeftInverse
132
132
; inverseʳ = inverseʳ ≈₁ ≈₂ ≈₃ _ g⁻¹ F.Eq₁.trans F.cong₂ F.inverseʳ G.inverseʳ
133
- } where module F = IsInverse _ _ f-inv; module G = IsInverse _ _ g-inv
133
+ } where module F = IsInverse f-inv; module G = IsInverse g-inv
134
134
135
135
------------------------------------------------------------------------
136
136
-- Setoid bundles
0 commit comments