|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Construct IsXHomomorphisms from a function which is homomorphic |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +module Algebra.Morphism.Construct.On |
| 10 | + where |
| 11 | + |
| 12 | +open import Algebra.Bundles.Raw |
| 13 | +open import Algebra.Core using (Op₁; Op₂) |
| 14 | +import Algebra.Morphism.Definitions as MorphismDefinitions |
| 15 | + --using (Homomorphic₁; Homomorphic₂) |
| 16 | +open import Algebra.Morphism.Structures |
| 17 | + --using (IsMagmaHomomorphism; IsMagmaMonomorphism) |
| 18 | +open import Level using (Level) |
| 19 | +import Relation.Binary.Morphism.Construct.On as On |
| 20 | + using (_≈_; module ι) |
| 21 | + |
| 22 | +private |
| 23 | + variable |
| 24 | + a b ℓ : Level |
| 25 | + A : Set a |
| 26 | + _∙_ : Op₂ A |
| 27 | + ε : A |
| 28 | + _⁻¹ : Op₁ A |
| 29 | + |
| 30 | +------------------------------------------------------------------------ |
| 31 | +-- Definitions |
| 32 | + |
| 33 | +module Magma |
| 34 | + (rawMagma : RawMagma b ℓ) (let module B = RawMagma rawMagma) |
| 35 | + (open MorphismDefinitions A _ B._≈_) (f : A → B.Carrier) |
| 36 | + (∙-homo : Homomorphic₂ f _∙_ B._∙_) |
| 37 | + where |
| 38 | + |
| 39 | + open On B._≈_ f using (_≈_; module ι) |
| 40 | + |
| 41 | + private |
| 42 | + rawMagmaOn : RawMagma _ _ |
| 43 | + rawMagmaOn = record { _≈_ = _≈_ ; _∙_ = _∙_ } |
| 44 | + |
| 45 | + isMagmaHomomorphism : IsMagmaHomomorphism rawMagmaOn rawMagma f |
| 46 | + isMagmaHomomorphism = record |
| 47 | + { isRelHomomorphism = ι.isHomomorphism |
| 48 | + ; homo = ∙-homo |
| 49 | + } |
| 50 | + |
| 51 | + isMagmaMonomorphism : IsMagmaMonomorphism rawMagmaOn rawMagma f |
| 52 | + isMagmaMonomorphism = record |
| 53 | + { isMagmaHomomorphism = isMagmaHomomorphism |
| 54 | + ; injective = ι.injective |
| 55 | + } |
| 56 | + |
| 57 | +module Monoid |
| 58 | + (rawMonoid : RawMonoid b ℓ) (let module B = RawMonoid rawMonoid) |
| 59 | + (open MorphismDefinitions A _ B._≈_) (f : A → B.Carrier) |
| 60 | + (∙-homo : Homomorphic₂ f _∙_ B._∙_) (ε-homo : Homomorphic₀ f ε B.ε) |
| 61 | + where |
| 62 | + |
| 63 | + open On B._≈_ f using (_≈_; module ι) |
| 64 | + |
| 65 | + private |
| 66 | + rawMonoidOn : RawMonoid _ _ |
| 67 | + rawMonoidOn = record { _≈_ = _≈_ ; _∙_ = _∙_ ; ε = ε } |
| 68 | + |
| 69 | + isMonoidHomomorphism : IsMonoidHomomorphism rawMonoidOn rawMonoid f |
| 70 | + isMonoidHomomorphism = record |
| 71 | + { isMagmaHomomorphism = Magma.isMagmaHomomorphism B.rawMagma f ∙-homo |
| 72 | + ; ε-homo = ε-homo |
| 73 | + } |
| 74 | + |
| 75 | + isMonoidMonomorphism : IsMonoidMonomorphism rawMonoidOn rawMonoid f |
| 76 | + isMonoidMonomorphism = record |
| 77 | + { isMonoidHomomorphism = isMonoidHomomorphism |
| 78 | + ; injective = ι.injective |
| 79 | + } |
| 80 | + |
| 81 | +module Group |
| 82 | + (rawGroup : RawGroup b ℓ) (let module B = RawGroup rawGroup) |
| 83 | + (open MorphismDefinitions A _ B._≈_) (f : A → B.Carrier) |
| 84 | + (∙-homo : Homomorphic₂ f _∙_ B._∙_) (ε-homo : Homomorphic₀ f ε B.ε) |
| 85 | + (⁻¹-homo : Homomorphic₁ f _⁻¹ B._⁻¹) |
| 86 | + where |
| 87 | + |
| 88 | + open On B._≈_ f using (_≈_; module ι) |
| 89 | + |
| 90 | + private |
| 91 | + rawGroupOn : RawGroup _ _ |
| 92 | + rawGroupOn = record { _≈_ = _≈_ ; _∙_ = _∙_ ; ε = ε; _⁻¹ = _⁻¹ } |
| 93 | + |
| 94 | + isGroupHomomorphism : IsGroupHomomorphism rawGroupOn rawGroup f |
| 95 | + isGroupHomomorphism = record |
| 96 | + { isMonoidHomomorphism = Monoid.isMonoidHomomorphism B.rawMonoid f ∙-homo ε-homo |
| 97 | + ; ⁻¹-homo = ⁻¹-homo |
| 98 | + } |
| 99 | + |
| 100 | + isGroupMonomorphism : IsGroupMonomorphism rawGroupOn rawGroup f |
| 101 | + isGroupMonomorphism = record |
| 102 | + { isGroupHomomorphism = isGroupHomomorphism |
| 103 | + ; injective = ι.injective |
| 104 | + } |
| 105 | + |
| 106 | +{- etc. -} |
0 commit comments