Skip to content

Commit 6519b31

Browse files
authored
Update links and model versions on Google / Gemini model page (#185)
This PR proposes the following updates to the Google / Gemini model provider page in the Agno docs: - Updates model versions for Gemini 2.x model series - Adds more documentation links for both Google AI Studio and Vertex AI - Adds more detail around Vertex AI project creation and config P.S. Thanks for the great OSS framework!
1 parent 5d19bbd commit 6519b31

File tree

1 file changed

+17
-13
lines changed

1 file changed

+17
-13
lines changed

models/google.mdx

Lines changed: 17 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -2,21 +2,23 @@
22
title: Gemini
33
---
44

5-
Use Google's Gemini models through Google AI Studio - a platform providing access to large language models. Learn more [here](https://ai.google.dev/aistudio).
5+
Use Google's Gemini models through [Google AI Studio](https://ai.google.dev/gemini-api/docs) or [Google Cloud Vertex AI](https://cloud.google.com/vertex-ai/generative-ai/docs/overview) - platforms that provide access to large language models and other services.
66

7-
We recommend experimenting to find the best-suited model for your use-case. Here are some general recommendations:
7+
We recommend experimenting to find the best-suited model for your use case. Here are some general recommendations in the Gemini `2.x` family of models:
88

9-
- `gemini-1.5-flash` is good for most use-cases.
10-
- `gemini-1.5-flash-8b` is their most cost-effective model.
11-
- `gemini-2.0-flash-exp` is their strongest multi-modal model.
9+
- `gemini-2.0-flash` is good for most use-cases.
10+
- `gemini-2.0-flash-lite` is the most cost-effective model.
11+
- `gemini-2.5-pro-exp-03-25` is the strongest multi-modal model.
12+
13+
Refer to the [Google AI Studio documentation](https://ai.google.dev/gemini-api/docs/models) and the [Vertex AI documentation](https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models) for information on available model versions.
1214

1315
## Authentication
1416

1517
You can use Gemini models through either Google AI Studio or Google Cloud's Vertex AI:
1618

1719
### Google AI Studio
1820

19-
Set your `GOOGLE_API_KEY` environment variable. You can get one [from Google here](https://ai.google.dev/aistudio).
21+
Set the `GOOGLE_API_KEY` environment variable. You can get one [from Google AI Studio](https://ai.google.dev/gemini-api/docs/api-key).
2022

2123
<CodeGroup>
2224

@@ -32,15 +34,17 @@ setx GOOGLE_API_KEY ***
3234

3335
### Vertex AI
3436

35-
To use Vertex AI:
37+
To use Vertex AI in Google Cloud:
38+
39+
1. Refer to the [Vertex AI documentation](https://cloud.google.com/vertex-ai/docs/start/cloud-environment) to set up a project and development environment.
3640

37-
1. Install Google Cloud CLI and authenticate. More details [here](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstarts/quickstart-multimodal#setup-local).
41+
2. Install the `gcloud` CLI and authenticate (refer to the [quickstart](https://cloud.google.com/vertex-ai/generative-ai/docs/start/quickstarts/quickstart-multimodal) for more details):
3842

3943
```bash
4044
gcloud auth application-default login
4145
```
4246

43-
2. Enable Vertex AI API and set variables:
47+
3. Enable Vertex AI API and set the project ID environment variable (alternatively, you can set `project_id` in the `Agent` config):
4448

4549
Export the following variables:
4650

@@ -75,14 +79,14 @@ from agno.models.google import Gemini
7579

7680
# Using Google AI Studio
7781
agent = Agent(
78-
model=Gemini(id="gemini-1.5-flash"),
82+
model=Gemini(id="gemini-2.0-flash"),
7983
markdown=True,
8084
)
8185

8286
# Or using Vertex AI
8387
agent = Agent(
8488
model=Gemini(
85-
id="gemini-1.5-flash",
89+
id="gemini-2.0-flash",
8690
vertexai=True,
8791
project_id="your-project-id", # Optional if GOOGLE_CLOUD_PROJECT is set
8892
location="us-central1", # Optional
@@ -113,7 +117,7 @@ from agno.agent import Agent
113117
from agno.models.google import Gemini
114118

115119
agent = Agent(
116-
model=Gemini(id="gemini-2.0-flash-exp", grounding=True),
120+
model=Gemini(id="gemini-2.0-flash", grounding=True),
117121
show_tool_calls=True,
118122
markdown=True,
119123
)
@@ -132,7 +136,7 @@ from agno.agent import Agent
132136
from agno.models.google import Gemini
133137

134138
agent = Agent(
135-
model=Gemini(id="gemini-2.0-flash-exp", search=True),
139+
model=Gemini(id="gemini-2.0-flash", search=True),
136140
show_tool_calls=True,
137141
markdown=True,
138142
)

0 commit comments

Comments
 (0)