@@ -127,21 +127,46 @@ Release Date: 18 May 2020
127127 fixed range and its value must not go out of this range. Here are
128128 some examples:
129129
130- Assume there is a gene with the value 0.5.
130+ Assume there is a gene with the value 0.5.
131131
132- If ``mutation_type="random" `` and ``mutation_by_replacement=False ``,
133- then the generated random value (e.g. 0.1) will be added to the gene
134- value. The new gene value is **0.5+0.1=0.6 **.
132+ If ``mutation_type="random" `` and ``mutation_by_replacement=False ``,
133+ then the generated random value (e.g. 0.1) will be added to the gene
134+ value. The new gene value is **0.5+0.1=0.6 **.
135135
136- If ``mutation_type="random" `` and ``mutation_by_replacement=True ``,
137- then the generated random value (e.g. 0.1) will replace the gene
138- value. The new gene value is **0.1 **.
136+ If ``mutation_type="random" `` and ``mutation_by_replacement=True ``,
137+ then the generated random value (e.g. 0.1) will replace the gene value.
138+ The new gene value is **0.1 **.
139139
140- 3 . ``None `` value could be assigned to the ``mutation_type `` and
140+ 1 . ``None `` value could be assigned to the ``mutation_type `` and
141141 ``crossover_type `` parameters of the pygad.GA class constructor. When
142142 ``None ``, this means the step is bypassed and has no action.
143143
144- .. _header-n155 :
144+ .. _header-n62 :
145+
146+ PyGAD 2.3.0
147+ -----------
148+
149+ Release date: 1 June 2020
150+
151+ 1. A new module named ``pygad.cnn `` is supported for building
152+ convolutional neural networks.
153+
154+ 2. A new module named ``pygad.gacnn `` is supported for training
155+ convolutional neural networks using the genetic algorithm.
156+
157+ 3. The ``pygad.plot_result() `` method has 3 optional parameters named
158+ ``title ``, ``xlabel ``, and ``ylabel `` to customize the plot title,
159+ x-axis label, and y-axis label, respectively.
160+
161+ 4. The ``pygad.nn `` module supports the softmax activation function.
162+
163+ 5. The name of the ``pygad.nn.predict_outputs() `` function is changed to
164+ ``pygad.nn.predict() ``.
165+
166+ 6. The name of the ``pygad.nn.train_network() `` function is changed to
167+ ``pygad.nn.train() ``.
168+
169+ .. _header-n77 :
145170
146171PyGAD Projects at GitHub
147172========================
@@ -151,7 +176,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
151176open-source GitHub projects. A brief note about these projects is given
152177in the next subsections.
153178
154- .. _header-n51 :
179+ .. _header-n79 :
155180
156181`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
157182--------------------------------------------------------------------------------
@@ -162,7 +187,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
162187is the first project which is an open-source Python 3 project for
163188implementing the genetic algorithm based on NumPy.
164189
165- .. _header-n54 :
190+ .. _header-n82 :
166191
167192`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
168193----------------------------------------------------
@@ -176,7 +201,7 @@ neural network without using a training algorithm. Currently, it only
176201supports classification and later regression will be also supported.
177202Moreover, only one class is supported per sample.
178203
179- .. _header-n57 :
204+ .. _header-n85 :
180205
181206`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
182207--------------------------------------------------------------
@@ -189,7 +214,19 @@ projects
189214`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
190215and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
191216
192- .. _header-n60 :
217+ .. _header-n88 :
218+
219+ `NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
220+ ----------------------------------------------------
221+
222+ GitHub Link: https://github.com/ahmedfgad/NumPyCNN
223+
224+ `NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__ builds and trains
225+ convolutional neural networks using the genetic algorithm. It uses the
226+ `GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
227+ project for building the genetic algorithm.
228+
229+ .. _header-n91 :
193230
194231Submitting Issues
195232=================
@@ -206,7 +243,7 @@ is not working properly or to ask for questions.
206243If this is not a proper option for you, then check the **Contact Us **
207244section for more contact details.
208245
209- .. _header-n64 :
246+ .. _header-n95 :
210247
211248Ask for Feature
212249===============
223260
224261Also check the **Contact Us ** section for more contact details.
225262
226- .. _header-n68 :
263+ .. _header-n99 :
227264
228265Projects Built using PyGAD
229266==========================
@@ -242,15 +279,15 @@ Within your message, please send the following details:
242279
243280- Preferably, a link that directs the readers to your project
244281
245- .. _header-n79 :
282+ .. _header-n110 :
246283
247284For More Information
248285====================
249286
250287There are different resources that can be used to get started with the
251288genetic algorithm and building it in Python.
252289
253- .. _header-n81 :
290+ .. _header-n112 :
254291
255292Tutorial: Implementing Genetic Algorithm in Python
256293--------------------------------------------------
@@ -274,7 +311,7 @@ good resource to start with coding the genetic algorithm.
274311
275312|image0 |
276313
277- .. _header-n92 :
314+ .. _header-n123 :
278315
279316Tutorial: Introduction to Genetic Algorithm
280317-------------------------------------------
@@ -293,7 +330,7 @@ which is available at these links:
293330
294331|image1 |
295332
296- .. _header-n102 :
333+ .. _header-n133 :
297334
298335Tutorial: Build Neural Networks in Python
299336-----------------------------------------
@@ -313,7 +350,7 @@ available at these links:
313350
314351|image2 |
315352
316- .. _header-n112 :
353+ .. _header-n143 :
317354
318355Tutorial: Optimize Neural Networks with Genetic Algorithm
319356---------------------------------------------------------
@@ -333,7 +370,52 @@ available at these links:
333370
334371|image3 |
335372
336- .. _header-n122 :
373+ .. _header-n153 :
374+
375+ Tutorial: Building CNN in Python
376+ --------------------------------
377+
378+ To start with coding the genetic algorithm, you can check the tutorial
379+ titled `Building Convolutional Neural Network using NumPy from
380+ Scratch <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad> `__
381+ available at these links:
382+
383+ - `LinkedIn <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad >`__
384+
385+ - `Towards Data
386+ Science <https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a> `__
387+
388+ - `KDnuggets <https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html >`__
389+
390+ - `Chinese Translation <http://m.aliyun.com/yunqi/articles/585741 >`__
391+
392+ `This
393+ tutorial <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad> `__)
394+ is prepared based on a previous version of the project but it still a
395+ good resource to start with coding CNNs.
396+
397+ |image4 |
398+
399+ .. _header-n166 :
400+
401+ Tutorial: Derivation of CNN from FCNN
402+ -------------------------------------
403+
404+ Get started with the genetic algorithm by reading the tutorial titled
405+ `Derivation of Convolutional Neural Network from Fully Connected Network
406+ Step-By-Step <https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad> `__
407+ which is available at these links:
408+
409+ - `LinkedIn <https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad >`__
410+
411+ - `Towards Data
412+ Science <https://towardsdatascience.com/derivation-of-convolutional-neural-network-from-fully-connected-network-step-by-step-b42ebafa5275> `__
413+
414+ - `KDnuggets <https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-network-fully-connected-step-by-step.html >`__
415+
416+ |image5 |
417+
418+ .. _header-n176 :
337419
338420Book: Practical Computer Vision Applications Using Deep Learning with CNNs
339421--------------------------------------------------------------------------
@@ -359,7 +441,7 @@ Find the book at these links:
359441.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
360442 :alt:
361443
362- .. _header-n137 :
444+ .. _header-n191 :
363445
364446Contact Us
365447==========
@@ -388,3 +470,7 @@ Contact Us
388470 :target: https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad
389471.. |image3 | image :: https://user-images.githubusercontent.com/16560492/82078300-376e3980-96e1-11ea-821c-aa6b8ceb44d4.jpg
390472 :target: https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad
473+ .. |image4 | image :: https://user-images.githubusercontent.com/16560492/82431022-6c3a1200-9a8e-11ea-8f1b-b055196d76e3.png
474+ :target: https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad
475+ .. |image5 | image :: https://user-images.githubusercontent.com/16560492/82431369-db176b00-9a8e-11ea-99bd-e845192873fc.png
476+ :target: https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad
0 commit comments