@@ -82,12 +82,10 @@ public void testSensitivityMatrixCalculationFromErrorVector() {
8282 Vector errorVector = new Vector (1 );
8383 errorVector .setValue (0 , 1.261 );
8484 LayerSensitivity layer2Sensitivity = new LayerSensitivity (layer2 );
85- layer2 .setSensitivityMatrix (layer2Sensitivity
86- .sensitivityMatrixFromErrorMatrix (errorVector ));
85+ layer2Sensitivity .sensitivityMatrixFromErrorMatrix (errorVector );
8786
88- Matrix sensitivityMatrix = layer2 .getSensitivityMatrix ();
87+ Matrix sensitivityMatrix = layer2Sensitivity .getSensitivityMatrix ();
8988 assertEquals (-2.522 , sensitivityMatrix .get (0 , 0 ));
90- // System.out.println(sensistivityMatrix);
9189
9290 }
9391
@@ -124,14 +122,11 @@ public void testSensitivityMatrixCalculationFromSucceedingLayer() {
124122 Vector errorVector = new Vector (1 );
125123 errorVector .setValue (0 , 1.261 );
126124 LayerSensitivity layer2Sensitivity = new LayerSensitivity (layer2 );
127- layer2 .setSensitivityMatrix (layer2Sensitivity
128- .sensitivityMatrixFromErrorMatrix (errorVector ));
125+ layer2Sensitivity .sensitivityMatrixFromErrorMatrix (errorVector );
129126
130- // Matrix sensitivityMatrix = layer1
131- // .sensitivityMatrixFromSucceedingLayer(layer2);
132- layer1 .setSensitivityMatrix (layer1Sensitivity
133- .sensitivityMatrixFromSucceedingLayer (layer2 ));
134- Matrix sensitivityMatrix = layer1 .getSensitivityMatrix ();
127+ layer1Sensitivity
128+ .sensitivityMatrixFromSucceedingLayer (layer2Sensitivity );
129+ Matrix sensitivityMatrix = layer1Sensitivity .getSensitivityMatrix ();
135130
136131 assertEquals (2 , sensitivityMatrix .getRowDimension ());
137132 assertEquals (1 , sensitivityMatrix .getColumnDimension ());
@@ -173,15 +168,11 @@ public void testWeightUpdateMatrixesFormedCorrectly() {
173168 Vector errorVector = new Vector (1 );
174169 errorVector .setValue (0 , 1.261 );
175170 LayerSensitivity layer2Sensitivity = new LayerSensitivity (layer2 );
176- layer2 .setSensitivityMatrix (layer2Sensitivity
177- .sensitivityMatrixFromErrorMatrix (errorVector ));
171+ layer2Sensitivity .sensitivityMatrixFromErrorMatrix (errorVector );
178172
179- // layer1.sensitivityMatrixFromSucceedingLayer(layer2);
180- layer1 .setSensitivityMatrix (layer1Sensitivity
181- .sensitivityMatrixFromSucceedingLayer (layer2 ));
173+ layer1Sensitivity
174+ .sensitivityMatrixFromSucceedingLayer (layer2Sensitivity );
182175
183- // Matrix weightUpdateMatrix2 = layer2.calculateWeightUpdates(layer1
184- // .getLastActivationValues(), 0.1);
185176 Matrix weightUpdateMatrix2 = BackPropLearning .calculateWeightUpdates (
186177 layer2Sensitivity , layer1 .getLastActivationValues (), 0.1 );
187178 assertEquals (0.0809 , weightUpdateMatrix2 .get (0 , 0 ), 0.001 );
@@ -196,8 +187,6 @@ public void testWeightUpdateMatrixesFormedCorrectly() {
196187 assertEquals (0.0 , penultimateWeightUpdatematrix2 .get (0 , 0 ), 0.001 );
197188 assertEquals (0.0 , penultimateWeightUpdatematrix2 .get (0 , 1 ), 0.001 );
198189
199- // Matrix weightUpdateMatrix1 = layer1.calculateWeightUpdates(
200- // inputVector1, 0.1);
201190 Matrix weightUpdateMatrix1 = BackPropLearning .calculateWeightUpdates (
202191 layer1Sensitivity , inputVector1 , 0.1 );
203192 assertEquals (0.0049 , weightUpdateMatrix1 .get (0 , 0 ), 0.001 );
@@ -210,7 +199,6 @@ public void testWeightUpdateMatrixesFormedCorrectly() {
210199 .getPenultimateWeightUpdateMatrix ();
211200 assertEquals (0.0 , penultimateWeightUpdatematrix1 .get (0 , 0 ), 0.001 );
212201 assertEquals (0.0 , penultimateWeightUpdatematrix1 .get (1 , 0 ), 0.001 );
213- // System.out.println(weightUpdateMatrix1);
214202
215203 }
216204
@@ -247,13 +235,11 @@ public void testBiasUpdateMatrixesFormedCorrectly() {
247235
248236 Vector errorVector = new Vector (1 );
249237 errorVector .setValue (0 , 1.261 );
250- layer2 .setSensitivityMatrix (layer2Sensitivity
251- .sensitivityMatrixFromErrorMatrix (errorVector ));
252- // layer1.sensitivityMatrixFromSucceedingLayer(layer2);
253- layer1 .setSensitivityMatrix (layer1Sensitivity
254- .sensitivityMatrixFromSucceedingLayer (layer2 ));
238+ layer2Sensitivity .sensitivityMatrixFromErrorMatrix (errorVector );
239+
240+ layer1Sensitivity
241+ .sensitivityMatrixFromSucceedingLayer (layer2Sensitivity );
255242
256- // Vector biasUpdateVector2 = layer2.calculateBiasUpdates(0.1);
257243 Vector biasUpdateVector2 = BackPropLearning .calculateBiasUpdates (
258244 layer2Sensitivity , 0.1 );
259245 assertEquals (0.2522 , biasUpdateVector2 .getValue (0 ), 0.001 );
@@ -265,7 +251,6 @@ public void testBiasUpdateMatrixesFormedCorrectly() {
265251 .getPenultimateBiasUpdateVector ();
266252 assertEquals (0.0 , penultimateBiasUpdateVector2 .getValue (0 ), 0.001 );
267253
268- // Vector biasUpdateVector1 = layer1.calculateBiasUpdates(0.1);
269254 Vector biasUpdateVector1 = BackPropLearning .calculateBiasUpdates (
270255 layer1Sensitivity , 0.1 );
271256 assertEquals (0.00495 , biasUpdateVector1 .getValue (0 ), 0.001 );
@@ -316,26 +301,19 @@ public void testWeightsAndBiasesUpdatedCorrectly() {
316301 Vector errorVector = new Vector (1 );
317302 errorVector .setValue (0 , 1.261 );
318303 LayerSensitivity layer2Sensitivity = new LayerSensitivity (layer2 );
319- layer2 .setSensitivityMatrix (layer2Sensitivity
320- .sensitivityMatrixFromErrorMatrix (errorVector ));
321- // layer1.sensitivityMatrixFromSucceedingLayer(layer2);
322- layer1 .setSensitivityMatrix (layer1Sensitivity
323- .sensitivityMatrixFromSucceedingLayer (layer2 ));
304+ layer2Sensitivity .sensitivityMatrixFromErrorMatrix (errorVector );
324305
325- // layer2.calculateWeightUpdates(layer1.getLastActivationValues(), 0.1);
306+ layer1Sensitivity
307+ .sensitivityMatrixFromSucceedingLayer (layer2Sensitivity );
326308
327309 BackPropLearning .calculateWeightUpdates (layer2Sensitivity , layer1
328310 .getLastActivationValues (), 0.1 );
329311
330- // layer2.calculateBiasUpdates(0.1);
331312 BackPropLearning .calculateBiasUpdates (layer2Sensitivity , 0.1 );
332313
333- // layer1.calculateWeightUpdates(inputVector1, 0.1);
334-
335314 BackPropLearning .calculateWeightUpdates (layer1Sensitivity ,
336315 inputVector1 , 0.1 );
337316
338- // layer1.calculateBiasUpdates(0.1);
339317 BackPropLearning .calculateBiasUpdates (layer1Sensitivity , 0.1 );
340318
341319 layer2 .updateWeights ();
0 commit comments