Skip to content

Commit 058742e

Browse files
update mixed precision with comments
1 parent 8f12620 commit 058742e

File tree

1 file changed

+41
-8
lines changed

1 file changed

+41
-8
lines changed

ML/Pytorch/Basics/pytorch_mixed_precision_example.py

Lines changed: 41 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,23 @@
1+
"""
2+
Example code of how to use mixed precision training with PyTorch. In this
3+
case with a (very) small and simple CNN training on MNIST dataset. This
4+
example is based on the official PyTorch documentation on mixed precision
5+
training.
6+
7+
Programmed by Aladdin Persson <aladdin.persson at hotmail dot com>
8+
* 2020-04-10 Initial programming
9+
* 2022-12-19 Updated comments, made sure it works with latest PyTorch
10+
11+
"""
12+
113
# Imports
214
import torch
315
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
416
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
517
import torch.nn.functional as F # All functions that don't have any parameters
6-
from torch.utils.data import DataLoader # Gives easier dataset managment and creates mini batches
18+
from torch.utils.data import (
19+
DataLoader,
20+
) # Gives easier dataset managment and creates mini batches
721
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
822
import torchvision.transforms as transforms # Transformations we can perform on our dataset
923

@@ -12,9 +26,21 @@
1226
class CNN(nn.Module):
1327
def __init__(self, in_channels=1, num_classes=10):
1428
super(CNN, self).__init__()
15-
self.conv1 = nn.Conv2d(in_channels=1, out_channels=420, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
29+
self.conv1 = nn.Conv2d(
30+
in_channels=1,
31+
out_channels=420,
32+
kernel_size=(3, 3),
33+
stride=(1, 1),
34+
padding=(1, 1),
35+
)
1636
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
17-
self.conv2 = nn.Conv2d(in_channels=420, out_channels=1000, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
37+
self.conv2 = nn.Conv2d(
38+
in_channels=420,
39+
out_channels=1000,
40+
kernel_size=(3, 3),
41+
stride=(1, 1),
42+
padding=(1, 1),
43+
)
1844
self.fc1 = nn.Linear(1000 * 7 * 7, num_classes)
1945

2046
def forward(self, x):
@@ -29,7 +55,8 @@ def forward(self, x):
2955

3056

3157
# Set device
32-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
58+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
59+
assert device == "cuda", "GPU not available"
3360

3461
# Hyperparameters
3562
in_channel = 1
@@ -39,9 +66,13 @@ def forward(self, x):
3966
num_epochs = 5
4067

4168
# Load Data
42-
train_dataset = datasets.MNIST(root='dataset/', train=True, transform=transforms.ToTensor(), download=True)
69+
train_dataset = datasets.MNIST(
70+
root="dataset/", train=True, transform=transforms.ToTensor(), download=True
71+
)
4372
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
44-
test_dataset = datasets.MNIST(root='dataset/', train=False, transform=transforms.ToTensor(), download=True)
73+
test_dataset = datasets.MNIST(
74+
root="dataset/", train=False, transform=transforms.ToTensor(), download=True
75+
)
4576
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
4677

4778
# Initialize network
@@ -89,10 +120,12 @@ def check_accuracy(loader, model):
89120
num_correct += (predictions == y).sum()
90121
num_samples += predictions.size(0)
91122

92-
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}')
123+
print(
124+
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}"
125+
)
93126

94127
model.train()
95128

96129

97130
check_accuracy(train_loader, model)
98-
check_accuracy(test_loader, model)
131+
check_accuracy(test_loader, model)

0 commit comments

Comments
 (0)