Skip to content

Commit 48a55b8

Browse files
committed
fix a few typos
1 parent d67e8eb commit 48a55b8

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

resume/sorokin_resume.pdf

-8 Bytes
Binary file not shown.

resume/sorokin_resume.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -71,8 +71,8 @@ \subsection{Experiences}
7171
\newentry{\normalfont{2022.09 - 2022.11}}{\textbf{Participant} in \textbf{Argonne National Laboratory's Course on AI Driven Science on Supercomputers}. Key topics included handling large scale data pipelines and parallel training for neural networks.} %\itlink{github.com/alegresor/ai-science-training-series}{https://github.com/alegresor/ai-science-training-series}.
7272
\subsection{Open-Source Software}
7373

74-
\newentry{\texttt{QMCPy}}{\textbf{Quasi-Monte Carlo Python Software} (\href{https://qmcsoftware.github.io/QMCSoftware}{qmcsoftware.github.io/QMCSoftware}). I led dozens of collaborators across acadamia and industy to develop QMC sequence generators, automatic variable transformations, adaptive error estimation algorithms, and diverse use cases \cite{sorokin.thesis,sorokin.2025.ld_randomizations_ho_nets_fast_kernel_mats,choi.challenges_great_qmc_software,choi.QMC_software,sorokin.MC_vector_functions_integrals,sorokin.QMC_IS_QMCPy,hickernell.qmc_what_why_how,jain.bernstein_betting_confidence_intervals}.}
75-
\newentry{\texttt{FastGPs}}{\textbf{Scalable Gaussian Process Regression in Python} (\href{https://alegresor.github.io/fastgps}{alegresor.github.io/fastgps}). This supports GPU scaling, batched inference, robust hyperparameter optimization, multi-fidelity GPs, and efficient Bayesian cubature. \texttt{FastGPs} is the first package to implement GPs which require only $\mathcal{O}(n)$ storage and $\mathcal{O}(n \log n)$ computations compared to the tyipcal $\mathcal{O}(n^2)$ storage and $\mathcal{O}(n^3)$ computations requirements.}
74+
\newentry{\texttt{QMCPy}}{\textbf{Quasi-Monte Carlo Python Software} (\href{https://qmcsoftware.github.io/QMCSoftware}{qmcsoftware.github.io/QMCSoftware}). I led dozens of collaborators across academia and industry to develop QMC sequence generators, automatic variable transformations, adaptive error estimation algorithms, and diverse use cases \cite{sorokin.thesis,sorokin.2025.ld_randomizations_ho_nets_fast_kernel_mats,choi.challenges_great_qmc_software,choi.QMC_software,sorokin.MC_vector_functions_integrals,sorokin.QMC_IS_QMCPy,hickernell.qmc_what_why_how,jain.bernstein_betting_confidence_intervals}.}
75+
\newentry{\texttt{FastGPs}}{\textbf{Scalable Gaussian Process Regression in Python} (\href{https://alegresor.github.io/fastgps}{alegresor.github.io/fastgps}). This supports GPU scaling, batched inference, robust hyperparameter optimization, multi-fidelity GPs, and efficient Bayesian cubature. \texttt{FastGPs} is the first package to implement GPs which require only $\mathcal{O}(n)$ storage and $\mathcal{O}(n \log n)$ computations compared to the typical $\mathcal{O}(n^2)$ storage and $\mathcal{O}(n^3)$ computations requirements.}
7676
\newentry{\scalebox{.9}{\texttt{QMCGenerators.jl}}}{\textbf{Randomized Quasi-Monte Carlo Sequences in Julia} (\href{https://alegresor.github.io/QMCGenerators.jl}{alegresor.github.io/QMCGenerators.jl}).}
7777
\newentry{\texttt{QMCToolsCL}}{\textbf{Randomized Quasi-Monte Carlo Sequences in C / OpenCL} (\href{https://qmcsoftware.github.io/QMCToolsCL/}{qmcsoftware.github.io/QMCToolsCL/}).}
7878
\newentry{\scalebox{.95}{\texttt{TorchOrthoPolys}}}{\textbf{Orthogonal Polynomials in PyTorch} (\href{https://alegresor.github.io/TorchOrthoPolys/}{alegresor.github.io/TorchOrthoPolys/}) with GPU support.}

0 commit comments

Comments
 (0)