Skip to content

Commit 4c72f8b

Browse files
committed
Merge branch 'main' of github.com:alegresor/alegresor.github.io
2 parents 3a6f1f0 + 4a1d756 commit 4c72f8b

File tree

2 files changed

+17
-22
lines changed

2 files changed

+17
-22
lines changed

index.md

Lines changed: 17 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -9,36 +9,30 @@ layout: default
99

1010
## QMCPy
1111

12-
[QMCPy](https://qmcpy.readthedocs.io/en/latest/md_rst/QMCSoftware.html) is a Python package for Quasi-Monte Carlo which includes quasi-random (low discrepancy) sequence generators, automatic variable transforms, adaptive stopping criteria, and a suite of diverse use cases.
12+
[QMCPy](https://qmcpy.readthedocs.io/en/latest/md_rst/QMCSoftware.html) is a Python package for Quasi-Monte Carlo which includes quasi-random (low discrepancy) sequence generators, automatic variable transforms, adaptive stopping criteria, and a suite of diverse use cases.
1313

1414
```
1515
pip install qmcpy
1616
```
1717

1818
![image](./assets/ishigami.png)
1919

20+
## FastGPs
21+
22+
[FastGPs](https://alegresor.github.io/fastgps) is a Python package for fast, exact Gaussian process regression at only $\mathcal{O}(n \log n)$ cost. Support for fast variants of multi-task GPs, GPs with gradient information, and GPs with vector (batch) outputs are also supported. The package builds on the PyTorch stack to enable GPU support and efficient hyperparameter optimization.
23+
24+
![image](./assets/fastgaussianprocesses_logo.svg)
2025

2126
## QMCGenerators.jl
2227

23-
[QMCGenerators.jl](https://alegresor.github.io/QMCGenerators.jl/stable/) is a Julia package for quasi-random (low discrepancy) sequence generators. Lattice and digital sequences, including higher order versions, are supported along with a variety of randomization routines. This is a translation and enhancement of Dirk Nuyens' [Magic Point Shop](https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/).
28+
[QMCGenerators.jl](https://alegresor.github.io/QMCGenerators.jl/stable/) is a Julia package for quasi-random (low discrepancy) sequence generators. Lattice and digital sequences, including higher order versions, are supported along with a variety of randomization routines. This is a translation and enhancement of Dirk Nuyens' [Magic Point Shop](https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/).
2429

2530
```
2631
] add QMCGenerators
2732
```
2833

2934
![image](./assets/qmcgenerators_logo.svg)
3035

31-
## FastGaussianProcesses.jl
32-
33-
[FastGaussianProcesses.jl](https://alegresor.github.io/FastGaussianProcesses.jl) is a Julia package for fast construction of Gaussian processes regression models when one controls the design of experiments. Gradient information may also be quickly incorporated into the GP. A GP fit to $N$ sampling locations with $M$ derivative orders available would typically cost $\mathcal{O}(M^3N^3)$ to fit including kernel parameter optimization. Our fast algorithms cost only $\mathcal{O}(M^2 N \log N + M^3 N)$. Typically $M=1$ when only the function $f:[0,1]^s \to \mathbb{R}$ is evaluated. When the gradient is also evaluated we have $M = 1+s$. Incorporating second derivatives and beyond is support but limited.
34-
35-
```
36-
] add FastGaussianProcesses
37-
```
38-
39-
![image](./assets/fastgaussianprocesses_logo.svg)
40-
41-
4236
# Posters
4337

4438
## A Neural Surrogate Solver for Radiation Transfer
@@ -49,7 +43,7 @@ pip install qmcpy
4943

5044
## Fast Gaussian Process Regression for Smooth Functions
5145

52-
2024 Illinois Institute of Technology Menger Day
46+
2024 Illinois Institute of Technology Menger Day
5347

5448
<embed src="./posters/2024_FastGP_MengerIIT.pdf" type="application/pdf" width="1000" height="750"/>
5549

@@ -86,21 +80,21 @@ pip install qmcpy
8680

8781
# Presentations
8882

89-
## Scientific Machine Learning of Radiative Transfer Equations
83+
## Quasi-Monte Carlo and Fast Multi-Task Gaussian Process Regression
9084

91-
2024 Illinois Institute of Technology, Department of Applied Mathematics, Computational Mathematics Seminar
85+
2025 Caltech Lunch Group Seminar
9286

93-
<embed src="./presentations/2024_RTEDeepONet_NeurIPSD3S3.pdf" type="application/pdf" width="1000" height="600"/>
87+
<embed src="./presentations/2025_QMCFastMTGPs_Caltech.pdf" type="application/pdf" width="1000" height="600"/>
9488

95-
## Fast Gaussian Process Regression for Smooth Functions using Lattice and Digital Sequences with Matching Kernels
89+
## Scientific Machine Learning of Radiative Transfer Equations
9690

97-
[2024 Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing Conference](https://uwaterloo.ca/monte-carlo-methods-scientific-computing-conference/)
91+
2024 Illinois Institute of Technology, Department of Applied Mathematics, Computational Mathematics Seminar
9892

99-
<embed src="./presentations/2024_HODNKernels_MCQMC.pdf" type="application/pdf" width="1000" height="600"/>
93+
<embed src="./presentations/2024_RTEDeepONet_NeurIPSD3S3.pdf" type="application/pdf" width="1000" height="600"/>
10094

101-
## Fast Gaussian Process Regression with Derivative Information using Lattice and Digital Sequences
95+
## Fast Gaussian Process Regression with Derivative Information using Lattice and Digital Sequences
10296

103-
2024 Illinois Institute of Technology PhD Comprehensive Exam
97+
2024 Illinois Institute of Technology PhD Comprehensive Exam
10498

10599
<embed src="./presentations/2024_PhDComp_IIT.pdf" type="application/pdf" width="1000" height="600"/>
106100

@@ -130,6 +124,7 @@ pip install qmcpy
130124

131125
## Other Presentations
132126

127+
- [Fast Gaussian Process Regression for Smooth Functions using Lattice and Digital Sequences with Matching Kernels](./presentations/2024_HODNKernels_MCQMC.pdf) @ [2024 Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing Conference](https://uwaterloo.ca/monte-carlo-methods-scientific-computing-conference/)
133128
- [Walsh Functions and Spaces](./presentations/2024_WalshFunctions_IIT.pdf) @ 2024 Illinois Institute of Technology, Department of Applied Mathematics, Computational Mathematics and Multiscale Seminar
134129
- [Fast Physics Informed Kernel Methods for Nonlinear PDEs with Unknown Coefficients](./presentations/2024_kernel_PDE_opterator_learning_SampSci.pdf) @ [2024 SampSci Conference](https://sites.google.com/view/sampsci-2024/home?authuser=0)
135130
- [Fast Gaussian Process Regression with Derivative Information](./presentations/2024_FastGPDerivs_SIAMUQ_MNADay.pdf) @ [2024 SIAM Conference on Uncertainty Quantification](https://www.siam.org/conferences/cm/conference/uq24) and [2024 Midwest Numerical Analysis Day](https://homepage.divms.uiowa.edu/~whan/mwnaday2024.html)
5.32 MB
Binary file not shown.

0 commit comments

Comments
 (0)