|
1 | 1 | \documentclass[a4paper, sans, 11pt]{moderncv} |
2 | 2 |
|
| 3 | +\moderncvcolor{blue} |
3 | 4 | \moderncvstyle{banking} |
4 | | -\moderncvcolor{black} |
5 | 5 |
|
6 | 6 | \usepackage{multicol} |
7 | 7 | \usepackage{lipsum} |
8 | 8 | \usepackage[hyperref]{} |
9 | | -\usepackage[scale=0.8, top=.5cm, bottom=.5cm, left=.8cm, right=.8cm]{geometry} |
| 9 | +\usepackage[scale=0.8, top=.5cm, bottom=.5cm, left=.725cm, right=.725cm]{geometry} |
10 | 10 |
|
11 | 11 | \usepackage{fontawesome5} |
12 | 12 | \usepackage{lmodern} |
@@ -64,17 +64,17 @@ \subsection{Experiences} |
64 | 64 | \newentry{\normalfont{2025.01 - 2025.12}}{\textbf{DOE SCGSR Fellow in Applied Math} at \textbf{Sandia National Laboratory} in Livermore, CA. I produced scientific ML models for machine-precision solutions to nonlinear PDEs \cite{bacho.CHONKNORIS}. I developed scalable multi-fidelity Gaussian processes regression models and open-source software implementations \cite{sorokin.FastBayesianMLQMC,sorokin.fastgps_probnum25}.} |
65 | 65 | \newentry{\normalfont{2024.05 - 2024.08}}{\textbf{Scientific Machine Learning Researcher} at \textbf{FM (Factory Mutual Insurance Company).} I deployed scientific ML models, including PINNs DeepONets, to accelerate CFD fire dynamics simulations \cite{sorokin.RTE_DeepONet}.} |
66 | 66 | \newentry{\normalfont{2023.05 - 2023.08}}{\textbf{Graduate Intern} at \textbf{Los Alamos National Laboratory.} I modeled multi-fidelity solutions to PDE with random coefficients using efficient and error aware Gaussian processes regression models \cite{sorokin.gp4darcy}.} |
67 | | -\newentry{\normalfont{2022.05 - 2022.08}}{\textbf{Givens Associate Intern} at \textbf{Argonne National Laboratory}. I derived error bounds and proposed a sequential sampling method for efficiently estimating failure probabilities with probabilistic models \cite{sorokin.adaptive_prob_failure_GP}.} |
| 67 | +\newentry{\normalfont{2022.05 - 2022.08}}{\textbf{Givens Associate Intern} at \textbf{Argonne National Laboratory}. I derived error bounds and a sequential sampling method for efficiently estimating failure probabilities with probabilistic models \cite{sorokin.adaptive_prob_failure_GP}.} |
68 | 68 | \newentry{\normalfont{2021.05 - 2021.08}}{\textbf{ML Engineer Intern} at \textbf{SigOpt, an Intel Company}. In a six-person ML team, I contributed production code for meta-learning model-aware hyperparameter tuning via Bayesian optimization \cite{sorokin.sigopt_mulch}.} |
69 | 69 | \newentry{\normalfont{2022.09 - 2022.11}}{\textbf{Participant} in \textbf{Argonne National Laboratory's Course on AI Driven Science on Supercomputers}. Key topics included handling large scale data pipelines and parallel training for neural networks.} %\itlink{github.com/alegresor/ai-science-training-series}{https://github.com/alegresor/ai-science-training-series}. |
70 | 70 | \newentry{\normalfont{2018.05 - 2019.08}}{\textbf{Instructor} for the \textbf{STARS Computing Corps' Computer Discover Program.} I taught and developed curriculum for middle school and high school girls to learn programmatic thinking in Python.} |
71 | 71 | \newentry{\normalfont{2021.08 - 2025.01}}{\textbf{Teaching Assistant} at \textbf{IIT}. I led reviews for PhD qualifying exams in analysis and computational math.} |
72 | 72 |
|
73 | 73 | \subsection{Open-Source Software} |
74 | | -\newentry{\texttt{QMCPy}}{\textbf{Quasi-Monte Carlo Python Software} (\href{https://qmcsoftware.github.io/QMCSoftware}{qmcsoftware.github.io/QMCSoftware}). I led dozens of collaborators across academia and industry to develop QMC sequence generators, automatic variable transformations, adaptive error estimation algorithms, and diverse use cases \cite{sorokin.thesis,sorokin.2025.ld_randomizations_ho_nets_fast_kernel_mats,choi.challenges_great_qmc_software,choi.QMC_software,sorokin.MC_vector_functions_integrals,sorokin.QMC_IS_QMCPy,hickernell.qmc_what_why_how,jain.bernstein_betting_confidence_intervals}.} |
| 74 | +\newentry{\texttt{QMCPy}}{\textbf{Quasi-Monte Carlo Python Software} (\href{https://qmcsoftware.github.io/QMCSoftware}{qmcsoftware.github.io/QMCSoftware}). I led dozens of collaborators across academia and industry to develop QMC sequence generators, automatic variable transformations, adaptive error estimators, and diverse use cases \cite{sorokin.thesis,sorokin.2025.ld_randomizations_ho_nets_fast_kernel_mats,choi.challenges_great_qmc_software,choi.QMC_software,sorokin.MC_vector_functions_integrals,sorokin.QMC_IS_QMCPy,hickernell.qmc_what_why_how,jain.bernstein_betting_confidence_intervals}.} |
75 | 75 | \newentry{\texttt{FastGPs}}{\textbf{Scalable Gaussian Processes in Python} (\href{https://alegresor.github.io/fastgps}{alegresor.github.io/fastgps}). This supports GPU scaling, batched inference, hyperparameter optimization, multi-fidelity GPs, and efficient Bayesian cubature. \texttt{FastGPs} is the first package to implement GPs which require only $\mathcal{O}(n)$ storage and $\mathcal{O}(n \log n)$ computations compared to the typical $\mathcal{O}(n^2)$ storage and $\mathcal{O}(n^3)$ computations requirements \cite{sorokin.fastgps_probnum25,sorokin.FastBayesianMLQMC}.} |
76 | 76 | \newentry{\scalebox{.9}{\texttt{QMCGenerators.jl}}}{\textbf{Randomized Quasi-Monte Carlo Sequences in Julia} (\href{https://alegresor.github.io/QMCGenerators.jl}{alegresor.github.io/QMCGenerators.jl}).} |
77 | | -\newentry{\texttt{QMCToolsCL}}{\textbf{Randomized Quasi-Monte Carlo Sequences in C / OpenCL} (\href{https://qmcsoftware.github.io/QMCToolsCL/}{qmcsoftware.github.io/QMCToolsCL/}).} |
| 77 | +\newentry{\texttt{QMCToolsCL}}{\textbf{Randomized Quasi-Monte Carlo Sequences in C/OpenCL} (\href{https://qmcsoftware.github.io/QMCToolsCL/}{qmcsoftware.github.io/QMCToolsCL/}).} |
78 | 78 | \newentry{\scalebox{.95}{\texttt{TorchOrthoPolys}}}{\textbf{Orthogonal Polynomials in PyTorch} (\href{https://alegresor.github.io/TorchOrthoPolys/}{alegresor.github.io/TorchOrthoPolys/}) with GPU support.} |
79 | 79 |
|
80 | 80 | \subsection{Awards} |
|
0 commit comments