@@ -180,7 +180,8 @@ def add_to_buffer(self, f):
180180 seed = PIL .Image .open (buffer )
181181
182182 seed = scipy .misc .fromimage (seed , mode = 'RGB' ).astype (np .float32 )
183- seed += scipy .random .normal (scale = args .train_noise , size = (seed .shape [0 ], seed .shape [1 ], 1 )) if args .train_noise else 0.0
183+ seed += scipy .random .normal (scale = args .train_noise , size = (seed .shape [0 ], seed .shape [1 ], 1 ))\
184+ if args .train_noise else 0.0
184185
185186 orig = scipy .misc .fromimage (orig ).astype (np .float32 )
186187
@@ -441,7 +442,7 @@ def compile(self):
441442 # Helper function for rendering test images during training, or standalone inference mode.
442443 input_tensor , seed_tensor = T .tensor4 (), T .tensor4 ()
443444 input_layers = {self .network ['img' ]: input_tensor , self .network ['seed' ]: seed_tensor }
444- output = lasagne .layers .get_output ([self .network [k ] for k in ['seed' , 'out' ]], input_layers , deterministic = True )
445+ output = lasagne .layers .get_output ([self .network [k ] for k in ['seed' ,'out' ]], input_layers , deterministic = True )
445446 self .predict = theano .function ([seed_tensor ], output )
446447
447448 if not args .train : return
@@ -541,7 +542,8 @@ def train(self):
541542 print (' - generator {}' .format (' ' .join (gen_info )))
542543
543544 real , fake = stats [:args .batch_size ], stats [args .batch_size :]
544- print (' - discriminator' , real .mean (), len (np .where (real > 0.5 )[0 ]), fake .mean (), len (np .where (fake < - 0.5 )[0 ]))
545+ print (' - discriminator' , real .mean (), len (np .where (real > 0.5 )[0 ]),
546+ fake .mean (), len (np .where (fake < - 0.5 )[0 ]))
545547 if epoch == args .adversarial_start - 1 :
546548 print (' - generator now optimizing against discriminator.' )
547549 self .model .adversary_weight .set_value (args .adversary_weight )
0 commit comments