|
1 | 1 | @testset "Algorithms -> Gröbner bases" begin |
2 | | - R, (x,y,z) = polynomial_ring(QQ,["x","y","z"], ordering=:degrevlex) |
| 2 | + R, (x,y,z) = polynomial_ring(QQ,["x","y","z"], internal_ordering=:degrevlex) |
3 | 3 | F = [x^2+1-3, x*y-z, x*z^2-3*y^2] |
4 | 4 | #= not a finite field =# |
5 | 5 | @test_throws ErrorException groebner_basis(Ideal(F)) |
6 | | - R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], ordering=:degrevlex) |
| 6 | + R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex) |
7 | 7 | I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y]) |
8 | 8 | G = groebner_basis(I) |
9 | 9 | H = MPolyRingElem[ |
|
32 | 32 | end |
33 | 33 |
|
34 | 34 | @testset "Algorithms -> Sig Gröbner bases" begin |
35 | | - R, (x,y,z) = polynomial_ring(QQ,["x","y","z"], ordering=:degrevlex) |
| 35 | + R, (x,y,z) = polynomial_ring(QQ,["x","y","z"], internal_ordering=:degrevlex) |
36 | 36 | F = [x^2+1-3, x*y-z, x*z^2-3*y^2] |
37 | 37 | #= not a finite field =# |
38 | 38 | @test_throws ErrorException sig_groebner_basis(F) |
39 | | - R, (x,y,z) = polynomial_ring(GF(17),["x","y","z"], ordering=:degrevlex) |
| 39 | + R, (x,y,z) = polynomial_ring(GF(17),["x","y","z"], internal_ordering=:degrevlex) |
40 | 40 | F = [x^2+1-3, x*y-z, x*z^2-3*y^2] |
41 | 41 | #= not homogeneous =# |
42 | 42 | @test_throws ErrorException sig_groebner_basis(F) |
|
47 | 47 | @test AlgebraicSolving._is_gb(sgb) |
48 | 48 |
|
49 | 49 | #= GB test 2 =# |
50 | | - R, (x,y,z,w) = polynomial_ring(GF(65521),["x","y","z","w"], ordering=:degrevlex) |
| 50 | + R, (x,y,z,w) = polynomial_ring(GF(65521),["x","y","z","w"], internal_ordering=:degrevlex) |
51 | 51 | F = cyclic(R).gens |
52 | 52 | Fhom = AlgebraicSolving._homogenize(F) |
53 | 53 | sgb = sig_groebner_basis(Fhom) |
|
60 | 60 | @test AlgebraicSolving._is_gb(sgb) |
61 | 61 |
|
62 | 62 | #= GB test 4 (pivot setting bug) =# |
63 | | - R, (x1, x2, x3, x4) = polynomial_ring(GF(65521), ["x1", "x2", "x3", "x4"], ordering=:degrevlex) |
| 63 | + R, (x1, x2, x3, x4) = polynomial_ring(GF(65521), ["x1", "x2", "x3", "x4"], internal_ordering=:degrevlex) |
64 | 64 | F = [11523*x1^4 + 30378*x1^3*x2 + 30154*x1^2*x2^2 + 10157*x1*x2^3 - 28136*x2^4 - 4771*x1^3*x3 - 21056*x1^2*x2*x3 + 15696*x1*x2^2*x3 - 16144*x2^3*x3 - 1553*x1^2*x3^2 - 30379*x1*x2*x3^2 - 12735*x2^2*x3^2 + 18058*x1*x3^3 + 24670*x2*x3^3 - 16379*x3^4 + 24196*x1^3*x4 - 19411*x1^2*x2*x4 + 17610*x1*x2^2*x4 - 5715*x2^3*x4 - 21186*x1^2*x3*x4 - 22865*x1*x2*x3*x4 - 1939*x2^2*x3*x4 - 5685*x1*x3^2*x4 + 8508*x2*x3^2*x4 + 21819*x3^3*x4 - 24868*x1^2*x4^2 - 18233*x1*x2*x4^2 - 14116*x2^2*x4^2 + 28291*x1*x3*x4^2 - 9068*x2*x3*x4^2 - 15138*x3^2*x4^2 + 8921*x1*x4^3 - 18808*x2*x4^3 - 3005*x3*x4^3 + 7368*x4^4, |
65 | 65 | 31703*x1^4 + 23616*x1^3*x2 + 20696*x1^2*x2^2 - 7125*x1*x2^3 + 15334*x2^4 + 26619*x1^3*x3 + 2173*x1^2*x2*x3 - 31312*x1*x2^2*x3 - 31386*x2^3*x3 - 25244*x1^2*x3^2 - 28729*x1*x2*x3^2 + 27244*x2^2*x3^2 - 24892*x1*x3^3 + 2046*x2*x3^3 + 2516*x3^4 - 18588*x1^3*x4 + 9980*x1^2*x2*x4 - 10104*x1*x2^2*x4 + 21688*x2^3*x4 - 1315*x1^2*x3*x4 - 17824*x1*x2*x3*x4 + 14919*x2^2*x3*x4 - 568*x1*x3^2*x4 - 22509*x2*x3^2*x4 + 18494*x3^3*x4 + 25947*x1^2*x4^2 - 28652*x1*x2*x4^2 - 25547*x2^2*x4^2 + 1637*x1*x3*x4^2 - 20130*x2*x3*x4^2 + 19739*x3^2*x4^2 + 3742*x1*x4^3 + 25425*x2*x4^3 + 6342*x3*x4^3 - 3004*x4^4, |
66 | 66 | 2857*x1^4 + 8898*x1^3*x2 + 16959*x1^2*x2^2 - 28026*x1*x2^3 - 25631*x2^4 + 11030*x1^3*x3 + 29101*x1^2*x2*x3 + 30359*x1*x2^2*x3 + 27330*x2^3*x3 + 19126*x1^2*x3^2 - 26603*x1*x2*x3^2 + 2510*x2^2*x3^2 + 7575*x1*x3^3 - 25033*x2*x3^3 - 21024*x3^4 + 30501*x1^3*x4 + 23834*x1^2*x2*x4 - 1858*x1*x2^2*x4 - 10862*x2^3*x4 + 30320*x1^2*x3*x4 + 19705*x1*x2*x3*x4 + 28359*x2^2*x3*x4 + 17590*x1*x3^2*x4 + 11929*x2*x3^2*x4 + 22830*x3^3*x4 + 13501*x1^2*x4^2 - 24860*x1*x2*x4^2 + 12598*x2^2*x4^2 - 9409*x1*x3*x4^2 - 2827*x2*x3*x4^2 - 8608*x3^2*x4^2 + 30938*x1*x4^3 - 12892*x2*x4^3 + 9165*x3*x4^3 - 5202*x4^4, |
|
0 commit comments