@@ -216,13 +216,13 @@ is greater then zero an empty array is returned.
216216julia> using AlgebraicSolving
217217
218218julia> R,(x1,x2,x3) = polynomial_ring(QQ, ["x1","x2","x3"])
219- (Multivariate polynomial ring in 3 variables over QQ, Nemo. QQMPolyRingElem[x1, x2, x3])
219+ (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x1, x2, x3])
220220
221221julia> I = Ideal([x1+2*x2+2*x3-1, x1^2+2*x2^2+2*x3^2-x1, 2*x1*x2+2*x2*x3-x2])
222- Nemo. QQMPolyRingElem[x1 + 2*x2 + 2*x3 - 1, x1^2 - x1 + 2*x2^2 + 2*x3^2, 2*x1*x2 + 2*x2*x3 - x2]
222+ QQMPolyRingElem[x1 + 2*x2 + 2*x3 - 1, x1^2 - x1 + 2*x2^2 + 2*x3^2, 2*x1*x2 + 2*x2*x3 - x2]
223223
224224julia> rational_parametrization(I)
225- AlgebraicSolving.RationalParametrization([:x1, :x2, :x3], Nemo. ZZRingElem[], 84*x^4 - 40*x^3 + x^2 + x, 336*x^3 - 120*x^2 + 2*x + 1, AbstractAlgebra.PolyRingElem[184*x^3 - 80*x^2 + 4*x + 1, 36*x^3 - 18*x^2 + 2*x])
225+ AlgebraicSolving.RationalParametrization([:x1, :x2, :x3], ZZRingElem[], 84*x^4 - 40*x^3 + x^2 + x, 336*x^3 - 120*x^2 + 2*x + 1, AbstractAlgebra.PolyRingElem[184*x^3 - 80*x^2 + 4*x + 1, 36*x^3 - 18*x^2 + 2*x])
226226```
227227"""
228228function rational_parametrization (
@@ -269,18 +269,18 @@ the rational roots of the ideal.
269269julia> using AlgebraicSolving
270270
271271julia> R,(x1,x2,x3) = polynomial_ring(QQ, ["x1","x2","x3"])
272- (Multivariate polynomial ring in 3 variables over QQ, Nemo. QQMPolyRingElem[x1, x2, x3])
272+ (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x1, x2, x3])
273273
274274julia> I = Ideal([x1+2*x2+2*x3-1, x1^2+2*x2^2+2*x3^2-x1, 2*x1*x2+2*x2*x3-x2])
275- Nemo. QQMPolyRingElem[x1 + 2*x2 + 2*x3 - 1, x1^2 - x1 + 2*x2^2 + 2*x3^2, 2*x1*x2 + 2*x2*x3 - x2]
275+ QQMPolyRingElem[x1 + 2*x2 + 2*x3 - 1, x1^2 - x1 + 2*x2^2 + 2*x3^2, 2*x1*x2 + 2*x2*x3 - x2]
276276
277277julia> rat_sols = rational_solutions(I)
278- 2-element Vector{Vector{Nemo. QQFieldElem}}:
278+ 2-element Vector{Vector{QQFieldElem}}:
279279 [1, 0, 0]
280280 [1//3, 0, 1//3]
281281
282282julia> map(r->map(p->evaluate(p, r), I.gens), rat_sols)
283- 2-element Vector{Vector{Nemo. QQFieldElem}}:
283+ 2-element Vector{Vector{QQFieldElem}}:
284284 [0, 0, 0]
285285 [0, 0, 0]
286286```
@@ -365,13 +365,13 @@ is greater than zero an empty array is returned.
365365julia> using AlgebraicSolving
366366
367367julia> R,(x1,x2,x3) = polynomial_ring(QQ, ["x1","x2","x3"])
368- (Multivariate polynomial ring in 3 variables over QQ, Nemo. QQMPolyRingElem[x1, x2, x3])
368+ (Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x1, x2, x3])
369369
370370julia> I = Ideal([x1+2*x2+2*x3-1, x1^2+2*x2^2+2*x3^2-x1, 2*x1*x2+2*x2*x3-x2])
371- Nemo. QQMPolyRingElem[x1 + 2*x2 + 2*x3 - 1, x1^2 - x1 + 2*x2^2 + 2*x3^2, 2*x1*x2 + 2*x2*x3 - x2]
371+ QQMPolyRingElem[x1 + 2*x2 + 2*x3 - 1, x1^2 - x1 + 2*x2^2 + 2*x3^2, 2*x1*x2 + 2*x2*x3 - x2]
372372
373373julia> real_solutions(I)
374- 4-element Vector{Vector{Nemo. QQFieldElem}}:
374+ 4-element Vector{Vector{QQFieldElem}}:
375375 [5416829397//8589934592, 2708414699//8589934592, -2844258330290649520990905062759917788583//21778071482940061661655974875633165533184]
376376 [1, 0, 0]
377377 [1945971683//8589934592, 972985841//8589934592, 744426424910260862653434112767010536665//2722258935367507707706996859454145691648]
0 commit comments