@@ -712,12 +712,11 @@ void ConvInferMeta(const MetaTensor& input,
712712 (in_data_dims[i] < 0 || filter_dims[i + 2 ] < 0 )) {
713713 output_shape.push_back (-1 );
714714 } else {
715- const int dkernel =
716- static_cast <int >(dilations[i] * (filter_data_dims[i] - 1 ) + 1 );
717- int output_size = static_cast <int >(
715+ const int64_t dkernel = dilations[i] * (filter_data_dims[i] - 1 ) + 1 ;
716+ int64_t output_size =
718717 (in_data_dims[i] + paddings[2 * i] + paddings[2 * i + 1 ] - dkernel) /
719718 strides[i] +
720- 1 ) ;
719+ 1 ;
721720 output_shape.push_back (output_size);
722721 }
723722 }
@@ -1001,15 +1000,14 @@ void CorrelationInferMeta(const MetaTensor& input1,
10011000 " Input(Y) of CorrelationOp must be 4 dims."
10021001 " But received dims is %d." ,
10031002 in2_dims.size ()));
1004- std::vector<int64_t > output_shape =
1005- CorrelationOutputSize (static_cast <int >(in_dims[0 ]),
1006- static_cast <int >(in_dims[2 ]),
1007- static_cast <int >(in_dims[3 ]),
1008- stride1,
1009- stride2,
1010- kernel_size,
1011- pad_size,
1012- max_displacement);
1003+ std::vector<int64_t > output_shape = CorrelationOutputSize (in_dims[0 ],
1004+ in_dims[2 ],
1005+ in_dims[3 ],
1006+ stride1,
1007+ stride2,
1008+ kernel_size,
1009+ pad_size,
1010+ max_displacement);
10131011 out->set_dims (common::make_ddim (output_shape));
10141012 out->set_dtype (input1.dtype ());
10151013}
@@ -2153,9 +2151,7 @@ void GatherNdInferMeta(const MetaTensor& x,
21532151 for (int i = 0 ; i < index_dims_size - 1 ; ++i) {
21542152 result_dims.emplace_back (index_dims[i]);
21552153 }
2156- for (int i = static_cast <int >(index_dims[index_dims_size - 1 ]);
2157- i < x_dims_size;
2158- ++i) {
2154+ for (int64_t i = index_dims[index_dims_size - 1 ]; i < x_dims_size; ++i) {
21592155 result_dims.emplace_back (x_dims[i]);
21602156 }
21612157
@@ -2852,9 +2848,9 @@ void LUUnpackInferMeta(const MetaTensor& x,
28522848 common::errors::InvalidArgument (
28532849 " The rank of input must greater than 2." ));
28542850
2855- int m = static_cast < int >( x_dims[x_rank - 2 ]) ;
2856- int n = static_cast < int >( x_dims[x_rank - 1 ]) ;
2857- int min_mn = std::min (m, n);
2851+ int64_t m = x_dims[x_rank - 2 ];
2852+ int64_t n = x_dims[x_rank - 1 ];
2853+ int64_t min_mn = std::min (m, n);
28582854 if (unpack_ludata) {
28592855 auto ldims = x_dims;
28602856 auto udims = x_dims;
@@ -3496,7 +3492,7 @@ void PullGpupsSparseInferMeta(const MetaTensor& w,
34963492 std::vector<phi::DDim> outs_dims;
34973493 outs_dims.resize (n_ids);
34983494 for (size_t i = 0 ; i < n_ids; ++i) {
3499- int embedding_size = size[i];
3495+ int64_t embedding_size = size[i];
35003496 const auto ids_dims = ids[i]->dims ();
35013497 int ids_rank = ids_dims.size ();
35023498 PADDLE_ENFORCE_EQ (ids_dims[ids_rank - 1 ],
@@ -4028,7 +4024,7 @@ void StftInferMeta(const MetaTensor& x,
40284024 const auto & x_dims = x.dims ();
40294025 const int x_rank = x_dims.size ();
40304026 const auto & window_dims = window.dims ();
4031- const int window_size = static_cast < int >( window_dims[0 ]) ;
4027+ const int64_t window_size = window_dims[0 ];
40324028
40334029 PADDLE_ENFORCE_EQ (
40344030 x_rank,
@@ -4052,8 +4048,8 @@ void StftInferMeta(const MetaTensor& x,
40524048 n_fft,
40534049 window_size));
40544050
4055- int seq_length = static_cast < int >( x_dims[x_rank - 1 ]) ;
4056- int n_frames = 1 + (seq_length - n_fft) / hop_length;
4051+ int64_t seq_length = x_dims[x_rank - 1 ];
4052+ int64_t n_frames = 1 + (seq_length - n_fft) / hop_length;
40574053
40584054 PADDLE_ENFORCE_LE (n_fft,
40594055 seq_length,
@@ -4212,9 +4208,9 @@ void LstsqInferMeta(const MetaTensor& x,
42124208 int x_rank = x_dims.size ();
42134209 int y_rank = y_dims.size ();
42144210
4215- int m = static_cast < int >( x_dims[x_rank - 2 ]) ;
4216- int n = static_cast < int >( x_dims[x_rank - 1 ]) ;
4217- int nrhs = static_cast < int >( y_dims[x_rank - 1 ]) ;
4211+ int64_t m = x_dims[x_rank - 2 ];
4212+ int64_t n = x_dims[x_rank - 1 ];
4213+ int64_t nrhs = y_dims[x_rank - 1 ];
42184214
42194215 PADDLE_ENFORCE_GE (x_rank,
42204216 2 ,
@@ -4393,9 +4389,9 @@ void YoloBoxInferMeta(const MetaTensor& x,
43934389 " But received class_num (%s)" ,
43944390 class_num));
43954391
4396- int box_num = 0 ;
4392+ int64_t box_num = 0 ;
43974393 if ((dim_x[2 ] > 0 && dim_x[3 ] > 0 ) || config.is_runtime ) {
4398- box_num = static_cast < int >( dim_x[2 ] * dim_x[3 ] * anchor_num) ;
4394+ box_num = dim_x[2 ] * dim_x[3 ] * anchor_num;
43994395 } else {
44004396 box_num = -1 ;
44014397 }
@@ -4701,8 +4697,8 @@ void WeightDequantizeInferMeta(const MetaTensor& x,
47014697 scale.dims ()[0 ],
47024698 real_channel_shape));
47034699 }
4704- int n = static_cast < int >( x.dims ()[1 ]) ;
4705- int k = static_cast < int >( real_channel_shape) ;
4700+ int64_t n = x.dims ()[1 ];
4701+ int64_t k = real_channel_shape;
47064702 out->set_dims (common::make_ddim ({n, k}));
47074703 out->set_dtype (scale.dtype ());
47084704}
0 commit comments