1+ # Configuration for evolving prompts with Qwen3-8B
2+ # Optimized for GEPA benchmark comparison
3+
4+ # General settings
5+ max_iterations : 100 # Can be overridden by command line
6+ checkpoint_interval : 10
7+ log_level : " INFO"
8+ diff_based_evolution : false # Full rewrites for prompt evolution
9+ max_code_length : 10000
10+ language : " text"
11+
12+ # LLM Configuration for Qwen3-8B via OpenRouter
13+ llm :
14+ api_base : " https://openrouter.ai/api/v1"
15+ models :
16+ - name : " qwen/qwen3-8b"
17+ weight : 1.0
18+
19+ temperature : 0.8 # Higher temperature for creative evolution
20+ max_tokens : 4096
21+ timeout : 60
22+ retries : 3
23+
24+ # Prompt Configuration for evolution
25+ prompt :
26+ template_dir : " templates"
27+ num_top_programs : 5 # Show top 5 prompts for inspiration
28+ num_diverse_programs : 3 # Include 3 diverse prompts
29+ include_artifacts : true
30+
31+ system_message : |
32+ You are an expert at creating effective prompts for language models.
33+ Your goal is to evolve prompts that maximize accuracy on the given task.
34+
35+ When creating new prompts:
36+ 1. Build on successful patterns from the examples
37+ 2. Be creative but maintain clarity
38+ 3. Consider different reasoning strategies (direct, step-by-step, few-shot)
39+ 4. Optimize for the specific task requirements
40+
41+ # Database Configuration for MAP-Elites
42+ database :
43+ population_size : 50 # Moderate population for balance
44+ archive_size : 500
45+ num_islands : 4 # Multiple islands for diversity
46+
47+ feature_dimensions : ["prompt_length", "reasoning_strategy"]
48+ feature_bins : 10
49+
50+ elite_selection_ratio : 0.4 # 40% elites
51+ exploration_ratio : 0.3 # 30% exploration
52+ exploitation_ratio : 0.3 # 30% exploitation
53+
54+ migration_interval : 20
55+ migration_rate : 0.1
56+
57+ # Evaluator Configuration
58+ evaluator :
59+ timeout : 1800 # 30 minutes timeout for complex evaluations
60+ max_retries : 3
61+ parallel_evaluations : 4 # Parallel evaluation for speed
62+ cascade_evaluation : true # Use cascading to save API calls
63+ cascade_thresholds : [0.9] # Only 2 stages, must achieve 90% in stage 1 to proceed
64+
65+ # Enable LLM feedback for better guidance
66+ use_llm_feedback : true
67+ llm_feedback_weight : 0.2 # 20% weight on qualitative feedback
0 commit comments