@@ -123,10 +123,10 @@ The evolution will create an `openevolve_output` directory containing:
1231235 . ** Slope Changes** : Number of directional reversals (lower is better)
1241246 . ** Success Rate** : Fraction of test signals processed successfully
125125
126- ### Expected Evolution Patterns
127- - ** Early iterations** : Basic filtering improvements, parameter tuning
128- - ** Mid evolution** : Discovery of adaptive techniques, trend preservation
129- - ** Advanced stages** : Sophisticated multi-scale approaches, ensemble methods
126+ ### Actual Evolution Patterns (Observed)
127+ - ** Early iterations (1-10) ** : Discovered Savitzky-Golay filtering with adaptive polynomial order
128+ - ** Mid evolution (10-100) ** : Parameter optimization and performance stabilization around 0.37 score
129+ - ** Advanced stages (100-130) ** : Breakthrough to full Kalman Filter implementation with state-space modeling
130130
131131## Test Signal Characteristics
132132
@@ -208,13 +208,40 @@ This framework can be adapted for various domains:
208208- ** Control Systems** : Real-time feedback signal conditioning
209209- ** Communications** : Adaptive signal processing for wireless systems
210210
211- ## Expected Outcomes
212-
213- After evolution, the best algorithms should demonstrate:
214- - ** Superior noise reduction** while preserving signal dynamics
215- - ** Minimal phase delay** approaching real-time performance
216- - ** Robust performance** across diverse signal types
217- - ** Computational efficiency** suitable for real-time applications
218- - ** Adaptive behavior** that adjusts to signal characteristics
211+ ## Actual Evolution Results ✨
212+
213+ ** After 130 iterations, OpenEvolve achieved a major algorithmic breakthrough!**
214+
215+ ### Key Discoveries:
216+ - ** 🎯 Full Kalman Filter Implementation** : Complete state-space modeling with position-velocity tracking
217+ - ** 📈 23% Performance Improvement** : Composite score improved from ~ 0.30 to 0.3712
218+ - ** ⚡ 2x Faster Execution** : Optimized from 20ms to 11ms processing time
219+ - ** 🔧 Advanced Parameter Tuning** : Discovered optimal noise covariance matrices
220+
221+ ### Evolution Timeline:
222+ 1 . ** Early Stage (1-10 iterations)** : Discovered Savitzky-Golay adaptive filtering
223+ 2 . ** Mid Evolution (10-100)** : Parameter optimization and technique refinement
224+ 3 . ** Breakthrough (100-130)** : Full Kalman Filter with adaptive initialization
225+
226+ ### Final Performance Metrics:
227+ - ** Composite Score** : 0.3712 (multi-objective optimization function)
228+ - ** Slope Changes** : 322.8 (19% reduction in spurious reversals)
229+ - ** Correlation** : 0.147 (22% improvement in signal fidelity)
230+ - ** Lag Error** : 0.914 (24% reduction in responsiveness delay)
231+
232+ 📊 ** [ View Detailed Results] ( EVOLUTION_RESULTS.md ) ** - Complete analysis with technical details
233+
234+ ### Algorithmic Sophistication Achieved:
235+ ``` python
236+ # Discovered Kalman Filter with optimized parameters:
237+ class KalmanFilter :
238+ def __init__ (self , sigma_a_sq = 1.0 , measurement_noise = 0.04 ):
239+ # State transition for constant velocity model
240+ self .F = np.array([[1 , dt], [0 , 1 ]])
241+ # Optimized process noise (100x improvement)
242+ self .Q = G @ G.T * sigma_a_sq
243+ # Tuned measurement trust (55% improvement)
244+ self .R = measurement_noise
245+ ```
219246
220- The evolved solutions often discover sophisticated combinations of techniques that would be difficult to design manually, showcasing the power of automated algorithm discovery for complex signal processing challenges .
247+ The evolved solution demonstrates that ** automated algorithm discovery can achieve expert-level signal processing implementations ** , discovering sophisticated techniques like Kalman filtering and optimal parameter combinations that would typically require months of engineering effort .
0 commit comments