@@ -9,13 +9,13 @@ log_level: "INFO"
99# LLM configuration optimized for algorithmic pattern evolution
1010llm :
1111 primary_model : " gemini-2.5-flash-preview-05-20"
12- primary_model_weight : 0.7
12+ primary_model_weight : 0.6
1313 secondary_model : " gemini-2.5-pro-preview-05-06"
14- secondary_model_weight : 0.3
14+ secondary_model_weight : 0.4
1515 api_base : " https://generativelanguage.googleapis.com/v1beta/openai/"
16- temperature : 0.8
16+ temperature : 0.7
1717 top_p : 0.95
18- max_tokens : 24000
18+ max_tokens : 32000
1919 timeout : 900 # Longer timeout for complex optimization reasoning
2020
2121# Specialized prompt for memory and algorithmic optimization with MLX API safety
@@ -280,18 +280,39 @@ prompt:
280280 ```python
281281 # WRONG: Using JAX-style has_aux parameter
282282 (scaled_loss_val, unscaled_loss_val), grads = mx.value_and_grad(loss_fn, has_aux=True)(model)
283+ # This causes unscaled_loss_val to be a tuple! float(tuple) fails!
284+
285+ # WRONG: Multiple return values from loss function when using value_and_grad
286+ def loss_fn(model):
287+ logits = model(inputs)
288+ loss = nn.losses.cross_entropy(logits, targets)
289+ return loss, some_aux_data # WRONG! Creates tuple!
290+
291+ loss_tuple, grads = mx.value_and_grad(loss_fn)(model) # loss_tuple is (loss, aux_data)
292+ return float(loss_tuple) # ERROR: float() argument must be a real number, not 'tuple'
283293
284294 # RIGHT: MLX only supports simple value_and_grad
295+ def loss_fn(model):
296+ logits = model(inputs)
297+ loss = nn.losses.cross_entropy(logits, targets)
298+ return loss # Return ONLY the loss, not a tuple
299+
285300 loss_value, grads = mx.value_and_grad(loss_fn)(model)
301+ return float(loss_value), should_update # loss_value is now a scalar
286302
287- # If you need scaled loss, handle it in the loss function itself:
303+ # RIGHT: If you need auxiliary data, compute it separately
288304 def loss_fn(model):
289305 logits = model(inputs)
290306 loss = nn.losses.cross_entropy(logits, targets)
291- # Scale inside the function if needed
292- return loss / max(total_accumulation_steps, 1)
307+ return loss # Only return loss for value_and_grad
293308
294309 loss_value, grads = mx.value_and_grad(loss_fn)(model)
310+ # Compute auxiliary data separately if needed
311+ with mx.no_grad(): # Don't need gradients for aux computation
312+ logits = model(inputs)
313+ accuracy = compute_accuracy(logits, targets)
314+
315+ return float(loss_value), should_update
295316 ```
296317
297318 ❌ **'NoneType' object is not subscriptable**
0 commit comments