1515 <a href =" https://github.com/codelion/openevolve/blob/main/LICENSE " ><img src =" https://img.shields.io/github/license/codelion/openevolve " alt =" License " ></a >
1616</p >
1717
18- [ 🚀 ** Quick Start** ] ( #- quick-start ) • [ 📖 ** Examples** ] ( #- examples-gallery ) • [ 📝 ** System Messages** ] ( #- crafting-effective-system-messages ) • [ 💬 ** Discussions** ] ( https://github.com/codelion/openevolve/discussions )
18+ [ 🚀 ** Quick Start** ] ( #quick-start ) • [ ** Examples** ] ( #examples-gallery ) • [ ** System Messages** ] ( #crafting-effective-system-messages ) • [ ** Discussions** ] ( https://github.com/codelion/openevolve/discussions )
1919
2020* From random search to state-of-the-art: Watch your code evolve in real-time*
2121
2222</div >
2323
2424---
2525
26- ## ✨ Why OpenEvolve?
26+ ## Why OpenEvolve?
2727
2828<table >
2929<tr >
3030<td width =" 33% " >
3131
32- ### 🎯 ** Autonomous Discovery**
32+ ### ** Autonomous Discovery**
3333LLMs don't just optimize—they ** discover** entirely new algorithms. No human guidance needed.
3434
3535</td >
3636<td width =" 33% " >
3737
38- ### ⚡ ** Proven Results**
38+ ### ** Proven Results**
3939** 2-3x speedups** on real hardware. ** State-of-the-art** circle packing. ** Breakthrough** optimizations.
4040
4141</td >
4242<td width =" 33% " >
4343
44- ### 🔬 ** Research Grade**
44+ ### ** Research Grade**
4545Full reproducibility, extensive evaluation pipelines, and scientific rigor built-in.
4646
4747</td >
@@ -58,11 +58,11 @@ Full reproducibility, extensive evaluation pipelines, and scientific rigor built
5858| ** Multi-objective** | Complex tradeoffs | Automatic Pareto optimization |
5959| ** Scaling** | Doesn't scale | Parallel evolution across islands |
6060
61- ## 🏆 Proven Achievements
61+ ## Proven Achievements
6262
6363<div align =" center " >
6464
65- | 🎯 ** Domain** | 📈 ** Achievement** | 🔗 ** Example** |
65+ | ** Domain** | ** Achievement** | ** Example** |
6666| ---------------| -------------------| ----------------|
6767| ** GPU Optimization** | Hardware-optimized kernel discovery | [ MLX Metal Kernels] ( examples/mlx_metal_kernel_opt/ ) |
6868| ** Mathematical** | State-of-the-art circle packing (n=26) | [ Circle Packing] ( examples/circle_packing/ ) |
@@ -127,12 +127,12 @@ result = evolve_function(
127127print (f " Evolved sorting algorithm: { result.best_code} " )
128128```
129129
130- ** Prefer Docker?** See the [ Installation & Setup] ( #- installation--setup ) section for Docker options.
130+ ** Prefer Docker?** See the [ Installation & Setup] ( #installation--setup ) section for Docker options.
131131
132- ## 🎬 See It In Action
132+ ## See It In Action
133133
134134<details >
135- <summary ><b >🔥 Circle Packing: From Random to State-of-the-Art</b ></summary >
135+ <summary ><b >Circle Packing: From Random to State-of-the-Art</b ></summary >
136136
137137** Watch OpenEvolve discover optimal circle packing in real-time:**
138138
@@ -146,7 +146,7 @@ print(f"Evolved sorting algorithm: {result.best_code}")
146146</details >
147147
148148<details >
149- <summary ><b >⚡ GPU Kernel Evolution</b ></summary >
149+ <summary ><b >GPU Kernel Evolution</b ></summary >
150150
151151** Before (Baseline)** :
152152``` metal
@@ -174,23 +174,23 @@ kernel void attention_evolved(/* ... */) {
174174
175175</details >
176176
177- ## 🧬 How OpenEvolve Works
177+ ## How OpenEvolve Works
178178
179179OpenEvolve implements a sophisticated ** evolutionary coding pipeline** that goes far beyond simple optimization:
180180
181181![ OpenEvolve Architecture] ( openevolve-architecture.png )
182182
183- ### 🎯 ** Core Innovation** : MAP-Elites + LLMs
183+ ### ** Core Innovation** : MAP-Elites + LLMs
184184
185185- ** Quality-Diversity Evolution** : Maintains diverse populations across feature dimensions
186186- ** Island-Based Architecture** : Multiple populations prevent premature convergence
187187- ** LLM Ensemble** : Multiple models with intelligent fallback strategies
188188- ** Artifact Side-Channel** : Error feedback improves subsequent generations
189189
190- ### 🚀 ** Advanced Features**
190+ ### ** Advanced Features**
191191
192192<details >
193- <summary ><b >🔬 Scientific Reproducibility</b ></summary >
193+ <summary ><b >Scientific Reproducibility</b ></summary >
194194
195195- ** Comprehensive Seeding** : Every component (LLM, database, evaluation) is seeded
196196- ** Default Seed=42** : Immediate reproducible results out of the box
@@ -200,7 +200,7 @@ OpenEvolve implements a sophisticated **evolutionary coding pipeline** that goes
200200</details >
201201
202202<details >
203- <summary ><b >🤖 Advanced LLM Integration</b ></summary >
203+ <summary ><b >Advanced LLM Integration</b ></summary >
204204
205205- ** Universal API** : Works with OpenAI, Google, local models, and proxies
206206- ** Intelligent Ensembles** : Weighted combinations with sophisticated fallback
@@ -210,7 +210,7 @@ OpenEvolve implements a sophisticated **evolutionary coding pipeline** that goes
210210</details >
211211
212212<details >
213- <summary ><b >🧬 Evolution Algorithm Innovations</b ></summary >
213+ <summary ><b >Evolution Algorithm Innovations</b ></summary >
214214
215215- ** Double Selection** : Different programs for performance vs inspiration
216216- ** Adaptive Feature Dimensions** : Custom quality-diversity metrics
@@ -219,15 +219,15 @@ OpenEvolve implements a sophisticated **evolutionary coding pipeline** that goes
219219
220220</details >
221221
222- ## 🎯 Perfect For
222+ ## Perfect For
223223
224224| ** Use Case** | ** Why OpenEvolve Excels** |
225225| --------------| ---------------------------|
226- | 🏃♂️ ** Performance Optimization** | Discovers hardware-specific optimizations humans miss |
227- | 🧮 ** Algorithm Discovery** | Finds novel approaches to classic problems |
228- | 🔬 ** Scientific Computing** | Automates tedious manual tuning processes |
229- | 🎮 ** Competitive Programming** | Generates multiple solution strategies |
230- | 📊 ** Multi-Objective Problems** | Pareto-optimal solutions across dimensions |
226+ | ** Performance Optimization** | Discovers hardware-specific optimizations humans miss |
227+ | ** Algorithm Discovery** | Finds novel approaches to classic problems |
228+ | ** Scientific Computing** | Automates tedious manual tuning processes |
229+ | ** Competitive Programming** | Generates multiple solution strategies |
230+ | ** Multi-Objective Problems** | Pareto-optimal solutions across dimensions |
231231
232232## 🛠 Installation & Setup
233233
@@ -356,23 +356,23 @@ llm:
356356
357357</details>
358358
359- ## 📸 Examples Gallery
359+ ## Examples Gallery
360360
361361<div align="center">
362362
363- ### 🏆 **Showcase Projects**
363+ ### **Showcase Projects**
364364
365365| Project | Domain | Achievement | Demo |
366366|---------|--------|-------------|------|
367- | [🎯 **Function Minimization**](examples/function_minimization/) | Optimization | Random → Simulated Annealing | [View Results](examples/function_minimization/openevolve_output/) |
368- | [⚡ **MLX GPU Kernels**](examples/mlx_metal_kernel_opt/) | Hardware | Apple Silicon optimization | [Benchmarks](examples/mlx_metal_kernel_opt/README.md) |
369- | [🔄 **Rust Adaptive Sort**](examples/rust_adaptive_sort/) | Algorithms | Data-aware sorting | [Code Evolution](examples/rust_adaptive_sort/) |
370- | [📐 **Symbolic Regression**](examples/symbolic_regression/) | Science | Automated equation discovery | [LLM-SRBench](examples/symbolic_regression/) |
371- | [🕸️ **Web Scraper + OptiLLM**](examples/web_scraper_optillm/) | AI Integration | Test-time compute optimization | [Smart Scraping](examples/web_scraper_optillm/) |
367+ | [**Function Minimization**](examples/function_minimization/) | Optimization | Random → Simulated Annealing | [View Results](examples/function_minimization/openevolve_output/) |
368+ | [**MLX GPU Kernels**](examples/mlx_metal_kernel_opt/) | Hardware | Apple Silicon optimization | [Benchmarks](examples/mlx_metal_kernel_opt/README.md) |
369+ | [**Rust Adaptive Sort**](examples/rust_adaptive_sort/) | Algorithms | Data-aware sorting | [Code Evolution](examples/rust_adaptive_sort/) |
370+ | [**Symbolic Regression**](examples/symbolic_regression/) | Science | Automated equation discovery | [LLM-SRBench](examples/symbolic_regression/) |
371+ | [**Web Scraper + OptiLLM**](examples/web_scraper_optillm/) | AI Integration | Test-time compute optimization | [Smart Scraping](examples/web_scraper_optillm/) |
372372
373373</div>
374374
375- ### 🎯 **Quick Example**: Function Minimization
375+ ### **Quick Example**: Function Minimization
376376
377377**Watch OpenEvolve evolve from random search to sophisticated optimization:**
378378
@@ -388,7 +388,7 @@ def minimize_function(func, bounds, max_evals=1000):
388388 return best_x, best_val
389389```
390390
391- ** ↓ Evolution Process ↓ **
391+ ** Evolution Process**
392392
393393``` python
394394# Evolved Program (Simulated Annealing + Adaptive Cooling)
@@ -413,20 +413,9 @@ def minimize_function(func, bounds, max_evals=1000):
413413### 🔬 ** Advanced Examples**
414414
415415<details >
416- <summary ><b >🎨 Prompt Evolution</b ></summary >
416+ <summary ><b >Prompt Evolution</b ></summary >
417417
418- ** Evolve prompts instead of code** for better LLM performance:
419-
420- ``` yaml
421- # Example: HotpotQA dataset
422- Initial Prompt : " Answer the question based on the context."
423-
424- Evolved Prompt : " As an expert analyst, carefully examine the provided context.
425- Break down complex multi-hop reasoning into clear steps. Cross-reference
426- information from multiple sources to ensure accuracy. Answer: [question]"
427-
428- Result : +23% accuracy improvement on HotpotQA benchmark
429- ` ` `
418+ ** Evolve prompts instead of code** for better LLM performance. See the [ LLM Prompt Optimization example] ( examples/llm_prompt_optimization/ ) for a complete case study with HotpotQA achieving +23% accuracy improvement.
430419
431420[ Full Example] ( examples/llm_prompt_optimization/ )
432421
@@ -683,7 +672,7 @@ system_message: |
683672
684673**Multi-Phase Evolution:** Start broad ("Explore different algorithmic approaches"), then focus ("Given successful simulated annealing, focus on parameter tuning")
685674
686- **Template Stochasticity:** See the [Configuration section](#- configuration) for complete template variation examples.
675+ **Template Stochasticity:** See the [Configuration section](#configuration) for complete template variation examples.
687676
688677</details>
689678
@@ -892,8 +881,8 @@ If you use OpenEvolve in your research, please cite:
892881
893882### ** 🚀 Ready to evolve your code?**
894883
895- ** Made with ❤️ by the OpenEvolve community**
884+ ** Maintained by the OpenEvolve community**
896885
897- * Star ⭐ this repository if OpenEvolve helps you discover breakthrough algorithms! *
886+ * If OpenEvolve helps you discover breakthrough algorithms, please consider starring this repository. *
898887
899888</div >
0 commit comments