@@ -14,131 +14,174 @@ llm:
1414 max_tokens : 32000
1515 timeout : 600
1616
17- # Focused prompt for custom GQA kernel evolution
17+ # Focused prompt for genuine MLX Qwen3 optimization
1818prompt :
1919 system_message : |
2020 You are an expert in optimizing attention kernels using MLX primitives for Apple Silicon.
2121
22- # SPECIFIC TARGET: Custom GQA Attention Kernel Evolution
23- # CURRENT PERFORMANCE: 70.3 tokens/sec average decode speed
24- # GOAL: 80+ tokens/sec (14%+ improvement) through kernel-level optimizations
22+ # SPECIFIC TARGET: MLX Qwen3 Attention Optimization
23+ # BASELINE: Standard MLX-LM implementation using mx.fast.scaled_dot_product_attention
24+ # GOAL: 10-20% improvement through genuine kernel-level innovations
2525 # HARDWARE: Apple M4 24GB unified memory
2626
2727 # ARCHITECTURE DETAILS:
2828 - Qwen3-0.6B: 40 query heads : 8 key/value heads (5:1 GQA ratio)
2929 - Head dimension: 128, Hidden size: 5120
3030 - Sequence lengths: 128-2048 tokens, Precision: bfloat16
3131
32- # CURRENT CUSTOM IMPLEMENTATION (Baseline to Evolve ):
32+ # CURRENT BASELINE (MLX-LM Standard Implementation ):
3333 ```python
34- # Manual GQA broadcasting approach (can be optimized)
35- keys_expanded = mx.repeat(keys, self.gqa_ratio, axis=1) # [B, 40, L, 128]
36- values_expanded = mx.repeat(values, self.gqa_ratio, axis=1) # [B, 40, L, 128]
37-
38- # Standard attention computation (room for optimization )
39- scores = mx.matmul(queries, keys_expanded.transpose(0, 1, 3, 2)) * self.scale
40- attn_weights = mx.softmax(scores, axis=-1, precise=True)
41- output = mx.matmul(attn_weights, values_expanded )
34+ # This is already highly optimized - your starting point
35+ from mlx_lm.models.base import scaled_dot_product_attention
36+ output = scaled_dot_product_attention(
37+ queries, keys, values, cache=cache, scale=self.scale, mask=mask
38+ )
39+
40+ # Which internally uses:
41+ # mx.fast.scaled_dot_product_attention(queries, keys, values, scale=scale, mask=mask )
4242 ```
4343
44- # KEY OPTIMIZATION OPPORTUNITIES:
45-
46- **1. GQA Broadcasting Strategies:**
47- Current: `mx.repeat` creates explicit copies of KV tensors
48- Alternatives:
49- - Chunked computation: Process 5 query heads per KV head separately
50- - On-demand broadcasting: Avoid materialized copies
51- - Strided access patterns: Direct indexing instead of repeat
52- - Memory-efficient reshaping: Better tensor layouts
53-
54- **2. Computation Fusion:**
55- Current: Separate matmul → softmax → matmul operations
56- Opportunities:
57- - Fused attention kernels using mx.fast primitives
58- - Combined operations to reduce memory transfers
59- - Optimized scaling and masking integration
60-
61- **3. Memory Access Optimization:**
62- Apple Silicon unified memory allows specific optimizations:
63- - Coalesced memory access for 40-head query tensor
64- - Cache-friendly KV head access patterns
65- - Reduced intermediate tensor allocations
66- - Better transpose operation ordering
67-
68- **4. Apple Silicon Specific Optimizations:**
69- - bfloat16 native operations
70- - Metal Performance Shaders integration
71- - Unified memory bandwidth optimization
72- - SIMD-friendly computation patterns
73-
74- **5. Sequence Length Scaling:**
75- Current performance degrades with longer contexts
76- Opportunities:
77- - Better attention computation chunking
78- - Optimized causal mask application
79- - Memory-efficient large sequence handling
44+ # GENUINE OPTIMIZATION OPPORTUNITIES:
8045
81- # EVOLUTION CONSTRAINTS:
82- 1. ONLY modify code inside the single EVOLVE-BLOCK-START/END section
83- 2. Use MLX primitives: mx.matmul, mx.softmax, mx.repeat, mx.where, etc.
84- 3. Maintain numerical correctness (same output as baseline)
85- 4. Keep tensor shapes compatible: input [B,40,L,128] output [B,40,L,128]
86- 5. Support causal masking for autoregressive generation
46+ **1. Beyond Standard SDPA:**
47+ MLX's mx.fast.scaled_dot_product_attention is already optimized, but you can potentially improve by:
48+ - Custom implementations that leverage the specific 40:8 GQA pattern
49+ - Memory layout optimizations for Apple Silicon unified memory
50+ - Novel computation ordering for better cache locality
51+ - Specialized handling of sequence length patterns
8752
88- # SPECIFIC EVOLUTION STRATEGIES TO EXPLORE:
53+ **2. Apple Silicon Specific Optimizations:**
54+ - Leverage bfloat16 native operations more effectively
55+ - Optimize for unified memory bandwidth patterns
56+ - Use SIMD-friendly computation layouts
57+ - Minimize memory allocation/deallocation overhead
8958
90- **Strategy 1: Chunked GQA Computation **
91- Instead of broadcasting, process query heads in groups :
59+ **3. GQA Pattern Optimizations: **
60+ Instead of relying on MLX's general GQA handling, create custom implementations :
9261 ```python
62+ # Example: Process in 8-head chunks to match KV heads exactly
63+ chunk_size = self.n_kv_heads # 8
9364 outputs = []
94- for i in range(self.gqa_ratio): # 5 iterations
95- q_chunk = queries[:, i*8:(i+1)*8, :, :] # [B, 8, L, 128]
96- scores = mx.matmul(q_chunk, keys.transpose(0, 1, 3, 2)) * self.scale
97- attn_weights = mx.softmax(scores, axis=-1)
98- output_chunk = mx.matmul(attn_weights, values)
99- outputs.append(output_chunk)
65+ for i in range(0, self.n_heads, chunk_size):
66+ q_chunk = queries[:, i:i+chunk_size, :, :] # [B, 8, L, 128]
67+ k_chunk = keys[:, i//5, :, :].unsqueeze(1) # Corresponding KV head
68+ v_chunk = values[:, i//5, :, :].unsqueeze(1)
69+
70+ # Custom attention computation for this chunk
71+ chunk_output = custom_attention(q_chunk, k_chunk, v_chunk)
72+ outputs.append(chunk_output)
73+
10074 output = mx.concatenate(outputs, axis=1)
10175 ```
10276
103- **Strategy 2: Optimized Broadcasting**
104- Use reshape and tile operations instead of repeat:
77+ **4. Memory Access Pattern Optimization:**
78+ ```python
79+ # Example: Reorder operations for better memory locality
80+ # Instead of: Q @ K^T → softmax → @ V
81+ # Try: Chunked computation with better cache usage
82+
83+ # Tile-based computation
84+ tile_size = 64 # Optimize for L1 cache
85+ for i in range(0, L, tile_size):
86+ for j in range(0, L, tile_size):
87+ # Process attention in tiles for better memory locality
88+ ```
89+
90+ **5. Operation Fusion Beyond Standard:**
91+ ```python
92+ # Custom fused operations that MLX might not provide
93+ # Combine scaling, masking, and computation in single kernels
94+ # Fuse RoPE application with attention computation
95+ # Integrate KV cache operations more efficiently
96+ ```
97+
98+ **6. Sequence Length Specific Optimizations:**
99+ ```python
100+ # Different strategies for different sequence lengths
101+ if L <= 512:
102+ # Use memory-intensive but fast approach
103+ return fast_short_sequence_attention(...)
104+ elif L <= 2048:
105+ # Balanced approach
106+ return balanced_attention(...)
107+ else:
108+ # Memory-efficient approach for long sequences
109+ return memory_efficient_attention(...)
110+ ```
111+
112+ # EVOLUTION CONSTRAINTS:
113+ 1. ONLY modify code inside the single EVOLVE-BLOCK-START/END section
114+ 2. Must use MLX primitives: mx.matmul, mx.softmax, mx.fast.*, etc.
115+ 3. Maintain numerical correctness (same outputs as MLX-LM baseline)
116+ 4. Keep tensor shapes: input [B,40,L,128] output [B,40,L,128]
117+ 5. Support causal masking and KV caching
118+ 6. Must actually improve upon mx.fast.scaled_dot_product_attention
119+
120+ # WHAT NOT TO DO (these are already optimized in MLX):
121+ ❌ Don't use naive manual matrix multiplication
122+ ❌ Don't use mx.repeat for GQA broadcasting (inefficient)
123+ ❌ Don't reimplement basic softmax or matmul operations
124+ ❌ Don't ignore the benefits of fused operations
125+
126+ # WHAT TO EXPLORE (genuine optimization opportunities):
127+ ✅ Custom GQA computation patterns
128+ ✅ Apple Silicon specific memory layouts
129+ ✅ Novel attention computation ordering
130+ ✅ Specialized sequence length handling
131+ ✅ Custom fusion beyond standard MLX offerings
132+ ✅ Cache-aware computation patterns
133+
134+ # EVOLUTION STRATEGIES TO TRY:
135+
136+ **Strategy 1: Chunked GQA Processing**
137+ Process query heads in groups that align with KV heads:
138+ ```python
139+ # Process 8 query heads per KV head for perfect alignment
140+ n_chunks = self.n_heads // self.n_kv_heads # 5 chunks of 8 heads each
141+ for chunk_idx in range(n_chunks):
142+ q_start = chunk_idx * self.n_kv_heads
143+ q_end = q_start + self.n_kv_heads
144+ # Process this 8-head chunk with corresponding KV head
145+ ```
146+
147+ **Strategy 2: Memory Layout Optimization**
148+ Reorder computations for better cache locality:
105149 ```python
106- # More memory-efficient broadcasting
107- keys_reshaped = keys[:, :, None, :, :].repeat(self.gqa_ratio, axis=2)
108- keys_expanded = keys_reshaped.reshape(B, -1, L, 128)
150+ # Ensure contiguous memory access patterns
151+ # Optimize tensor layouts for Apple Silicon
152+ # Minimize intermediate tensor allocations
109153 ```
110154
111- **Strategy 3: Fused Operations **
112- Combine multiple operations to reduce memory transfers :
155+ **Strategy 3: Adaptive Computation **
156+ Use different strategies based on input characteristics :
113157 ```python
114- # Fused scaled dot-product attention using mx.fast primitives
115- # This might leverage optimized Metal kernels
158+ # Adapt based on sequence length, batch size, etc.
159+ # Use most efficient approach for each case
116160 ```
117161
118- **Strategy 4: Memory Layout Optimization **
119- Optimize tensor layouts for Apple Silicon :
162+ **Strategy 4: Custom Fused Operations **
163+ Create custom fusion that goes beyond standard SDPA :
120164 ```python
121- # Ensure contiguous memory layouts
122- # Optimize transpose operations
123- # Reduce intermediate allocations
165+ # Combine operations that MLX doesn't fuse automatically
166+ # Integrate masking, scaling, and computation more efficiently
124167 ```
125168
126- # SUCCESS METRICS (from benchmark suite) :
127- - Average decode speed: 70.3 → 80+ tokens/sec (14%+ improvement)
128- - Memory efficiency: maintain <2GB usage
129- - Scaling: reduce performance drop with longer contexts
130- - Correctness: identical outputs to baseline implementation
169+ # SUCCESS METRICS:
170+ - Improvement over MLX-LM baseline: 10-20% decode speed increase
171+ - Memory efficiency: similar or better than baseline
172+ - Correctness: identical outputs to MLX-LM implementation
173+ - Scalability: good performance across different sequence lengths
131174
132- Focus on CONCRETE kernel optimizations using MLX primitives .
133- Test different GQA computation strategies systematically .
134- Prioritize memory bandwidth efficiency and computation fusion .
175+ Focus on GENUINE improvements over the already-optimized MLX-LM baseline .
176+ Your goal is to find optimizations that even the MLX developers haven't implemented .
177+ This is challenging but represents real innovation opportunities .
135178
136179 num_top_programs : 4
137180 num_diverse_programs : 2
138181
139182# Database configuration
140183database :
141- db_path : " ./openevolve_output/qwen3_custom_gqa "
184+ db_path : " ./openevolve_output/qwen3_mlx_optimization "
142185 population_size : 50
143186 archive_size : 20
144187 num_islands : 4
@@ -154,4 +197,4 @@ evaluator:
154197# Evolution settings
155198diff_based_evolution : true
156199allow_full_rewrites : false
157- max_code_length : 50000
200+ max_code_length : 50000
0 commit comments