Skip to content

Commit f903f7e

Browse files
committed
Update README.md
1 parent 892f80b commit f903f7e

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

examples/llm_prompt_optimization/README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,11 @@
1-
# HuggingFace Dataset Prompt Optimization with OpenEvolve 🚀
1+
# LLM Prompt Optimization with OpenEvolve 🚀
22

3-
This example demonstrates how to use OpenEvolve to automatically optimize prompts for any HuggingFace dataset. The system uses evolutionary search to discover high-performing prompts by testing them against ground truth data.
3+
This example demonstrates how to use OpenEvolve to automatically optimize prompts for Large Language Models. The system uses evolutionary search to discover high-performing prompts by testing them against ground truth data from various datasets.
44

55
## 🎯 Overview
66

77
OpenEvolve automatically:
8-
- Loads any HuggingFace dataset
8+
- Loads datasets from various sources
99
- Evolves prompts through multiple generations
1010
- Uses cascading evaluation for efficiency
1111
- Finds optimal prompts for your specific task and model
@@ -43,8 +43,8 @@ This example uses a naming convention to match prompts with their dataset config
4343
Create your dataset configuration file (e.g., `emotion_prompt_dataset.yaml`):
4444

4545
```yaml
46-
# HuggingFace dataset configuration
47-
dataset_name: "dair-ai/emotion" # Any HuggingFace dataset
46+
# Dataset configuration
47+
dataset_name: "dair-ai/emotion" # Dataset identifier
4848
input_field: "text" # Field containing input data
4949
target_field: "label" # Field containing ground truth
5050
split: "test" # Dataset split to use
@@ -91,7 +91,7 @@ python ../../openevolve-run.py emotion_prompt.txt evaluator.py --config config.y
9191

9292
## 📊 Supported Datasets
9393

94-
This optimizer works with any HuggingFace dataset. Included examples:
94+
This optimizer works with a wide variety of datasets. Included examples:
9595

9696
- **IMDB Sentiment**: `initial_prompt.txt` + `initial_prompt_dataset.yaml` (binary classification)
9797
- **Emotion**: `emotion_prompt.txt` + `emotion_prompt_dataset.yaml` (6-class, benchmark against DSPy)
@@ -142,7 +142,7 @@ target_field: "summary"
142142

143143
The evaluator uses a straightforward single-stage evaluation:
144144

145-
1. **Load Dataset**: Downloads the specified HuggingFace dataset
145+
1. **Load Dataset**: Downloads the specified dataset
146146
2. **Sample Data**: Takes `max_samples` examples from the dataset
147147
3. **Test Prompt**: Sends each example through the LLM with the prompt
148148
4. **Calculate Accuracy**: Compares LLM outputs to ground truth labels
@@ -223,7 +223,7 @@ While the default setup is for classification, you can modify the evaluator for:
223223
## 🐛 Troubleshooting
224224

225225
### Dataset Not Found
226-
- Check the exact name on HuggingFace
226+
- Check the exact dataset name and source
227227
- Some datasets require acceptance of terms
228228

229229
### Low Stage 1 Accuracy
@@ -246,7 +246,7 @@ While the default setup is for classification, you can modify the evaluator for:
246246

247247
## 📚 Next Steps
248248

249-
- Try different datasets from HuggingFace
249+
- Try different datasets and benchmarks
250250
- Experiment with different models
251251
- Adjust evolution parameters in config.yaml
252252
- Create task-specific evaluation metrics

0 commit comments

Comments
 (0)