You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+14-14Lines changed: 14 additions & 14 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -273,17 +273,17 @@ called patchflows. We saw huge performance gains across all the supported patchf
273
273
274
274
## References
275
275
276
-
-[Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation](https://arxiv.org/abs/2409.12941)
277
-
-[Writing in the Margins: Better Inference Pattern for Long Context Retrieval](https://www.arxiv.org/abs/2408.14906)
278
-
-[Chain-of-Thought Reasoning Without Prompting](https://arxiv.org/abs/2402.10200)
279
-
-[Re-Reading Improves Reasoning in Large Language Models](https://arxiv.org/abs/2309.06275)
280
-
-[In-Context Principle Learning from Mistakes](https://arxiv.org/abs/2402.05403)
281
-
-[Planning In Natural Language Improves LLM Search For Code Generation](https://arxiv.org/abs/2409.03733)
282
-
-[Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171)
283
-
-[Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers](https://arxiv.org/abs/2408.06195)
284
-
-[Mixture-of-Agents Enhances Large Language Model Capabilities](https://arxiv.org/abs/2406.04692)
285
-
-[Prover-Verifier Games improve legibility of LLM outputs](https://arxiv.org/abs/2407.13692)
286
-
-[Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning](https://arxiv.org/abs/2405.00451)
287
-
-[Unsupervised Evaluation of Code LLMs with Round-Trip Correctness](https://arxiv.org/abs/2402.08699)
288
-
-[Patched MOA: optimizing inference for diverse software development tasks](https://arxiv.org/abs/2407.18521)
289
-
-[Patched RTC: evaluating LLMs for diverse software development tasks](https://arxiv.org/abs/2407.16557)
276
+
-[Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation](https://arxiv.org/abs/2409.12941) - [Evaluation script](https://github.com/codelion/optillm/blob/main/scripts/eval_frames_benchmark.py)
277
+
-[Writing in the Margins: Better Inference Pattern for Long Context Retrieval](https://www.arxiv.org/abs/2408.14906) - [Inspired the implementation of the memory plugin](https://github.com/codelion/optillm/blob/main/optillm/plugins/memory_plugin.py)
278
+
-[Chain-of-Thought Reasoning Without Prompting](https://arxiv.org/abs/2402.10200) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/cot_decoding.py)
279
+
-[Re-Reading Improves Reasoning in Large Language Models](https://arxiv.org/abs/2309.06275) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/reread.py)
280
+
-[In-Context Principle Learning from Mistakes](https://arxiv.org/abs/2402.05403) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/leap.py)
281
+
-[Planning In Natural Language Improves LLM Search For Code Generation](https://arxiv.org/abs/2409.03733) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/plansearch.py)
282
+
-[Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/self_consistency.py)
283
+
-[Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers](https://arxiv.org/abs/2408.06195) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/rstar.py)
284
+
-[Mixture-of-Agents Enhances Large Language Model Capabilities](https://arxiv.org/abs/2406.04692) - [Inspired the implementation of moa](https://github.com/codelion/optillm/blob/main/optillm/moa.py)
285
+
-[Prover-Verifier Games improve legibility of LLM outputs](https://arxiv.org/abs/2407.13692) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/pvg.py)
286
+
-[Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning](https://arxiv.org/abs/2405.00451) - [Inspired the implementation of mcts](https://github.com/codelion/optillm/blob/main/optillm/mcts.py)
287
+
-[Unsupervised Evaluation of Code LLMs with Round-Trip Correctness](https://arxiv.org/abs/2402.08699) - [Inspired the implementation of rto](https://github.com/codelion/optillm/blob/main/optillm/rto.py)
288
+
-[Patched MOA: optimizing inference for diverse software development tasks](https://arxiv.org/abs/2407.18521) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/moa.py)
289
+
-[Patched RTC: evaluating LLMs for diverse software development tasks](https://arxiv.org/abs/2407.16557) - [Implementation](https://github.com/codelion/optillm/blob/main/optillm/rto.py)
0 commit comments