|
11 | 11 | #include <aliceVision/system/main.hpp> |
12 | 12 | #include <aliceVision/config.hpp> |
13 | 13 | #include <aliceVision/sfmDataIO/viewIO.hpp> |
| 14 | +#include <aliceVision/mvsUtils/MultiViewParams.hpp> |
| 15 | + |
| 16 | +#include "nanoflann.hpp" |
14 | 17 |
|
15 | 18 | #include <boost/program_options.hpp> |
16 | 19 | #include <boost/filesystem.hpp> |
@@ -40,7 +43,137 @@ using namespace aliceVision::sfmDataIO; |
40 | 43 | namespace po = boost::program_options; |
41 | 44 | namespace fs = boost::filesystem; |
42 | 45 |
|
43 | | -bool filterSfMData(SfMData& sfmData, int maxNbObservationsPerLandmark) |
| 46 | +static const std::size_t MAX_LEAF_ELEMENTS = 10; |
| 47 | + |
| 48 | +template <typename DATA> |
| 49 | +struct PointVectorAdaptator |
| 50 | +{ |
| 51 | + using Derived = PointVectorAdaptator; //!< In this case the dataset class is myself. |
| 52 | + using T = double; |
| 53 | + |
| 54 | + const DATA& _data; |
| 55 | + PointVectorAdaptator(const DATA& data) |
| 56 | + : _data(data) |
| 57 | + { |
| 58 | + } |
| 59 | + |
| 60 | + /// CRTP helper method |
| 61 | + inline const Derived& derived() const { return *static_cast<const Derived*>(this); } |
| 62 | + /// CRTP helper method |
| 63 | + inline Derived& derived() { return *static_cast<Derived*>(this); } |
| 64 | + |
| 65 | + // Must return the number of data points |
| 66 | + inline size_t kdtree_get_point_count() const { return _data.size(); } |
| 67 | + |
| 68 | + // Returns the dim'th component of the idx'th point in the class: |
| 69 | + // Since this is inlined and the "dim" argument is typically an immediate value, the |
| 70 | + // "if/else's" are actually solved at compile time. |
| 71 | + inline T kdtree_get_pt(const size_t idx, int dim) const { return _data.at(idx).m[dim]; } |
| 72 | + |
| 73 | + // Optional bounding-box computation: return false to default to a standard bbox computation loop. |
| 74 | + // Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it |
| 75 | + // again. Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds) |
| 76 | + template <class BBOX> |
| 77 | + bool kdtree_get_bbox(BBOX& bb) const |
| 78 | + { |
| 79 | + return false; |
| 80 | + } |
| 81 | +}; |
| 82 | + |
| 83 | +template <typename DATA> |
| 84 | +using KdTree = nanoflann::KDTreeSingleIndexAdaptor< |
| 85 | + nanoflann::L2_Simple_Adaptor<double, PointVectorAdaptator>, |
| 86 | + PointVectorAdaptator, 3 /* dim */ |
| 87 | +>; |
| 88 | + |
| 89 | +template <typename DATA> |
| 90 | +class Tree |
| 91 | +{ |
| 92 | + std::unique_ptr<KdTree> _tree; |
| 93 | + std::unique_ptr<PointVectorAdaptator> _pointCloudRef; |
| 94 | + |
| 95 | +public: |
| 96 | + Tree(const DATA& data) { initKdTree(data); } |
| 97 | + |
| 98 | + void initKdTree(const DATA& data) |
| 99 | + { |
| 100 | + ALICEVISION_LOG_INFO("Build nanoflann KdTree index."); |
| 101 | + _pointCloudRef = std::make_unique<PointVectorAdaptator>(data); |
| 102 | + _tree = std::make_unique<KdTree>(3 /*dim*/, *_pointCloudRef.get(), |
| 103 | + nanoflann::KDTreeSingleIndexAdaptorParams(MAX_LEAF_ELEMENTS)); |
| 104 | + _tree->buildIndex(); |
| 105 | + ALICEVISION_LOG_INFO("KdTree created for " << data.size() << " points."); |
| 106 | + } |
| 107 | + |
| 108 | + bool locateNearestVertex(const Point3d& p, std::size_t& index, double& sq_dist) const |
| 109 | + { |
| 110 | + index = std::numeric_limits<std::size_t>::max(); |
| 111 | + sq_dist = std::numeric_limits<double>::max(); |
| 112 | + nanoflann::KNNResultSet<double, std::size_t> resultSet(1); |
| 113 | + resultSet.init(&index, &sq_dist); |
| 114 | + if(!_tree->findNeighbors(resultSet, p.m, nanoflann::SearchParams())) |
| 115 | + { |
| 116 | + return false; |
| 117 | + } |
| 118 | + return true; |
| 119 | + } |
| 120 | +}; |
| 121 | + |
| 122 | +bool filterLandmarks(SfMData& sfmData) |
| 123 | +{ |
| 124 | + mvsUtils::MultiViewParams mp(sfmData, "", "", "", false); |
| 125 | + std::vector<std::pair<double, IndexT>> landmarksPixSize(sfmData.getLandmarks().size()); |
| 126 | + |
| 127 | + #pragma omp parallel for |
| 128 | + for(auto i = 0; i < sfmData.getLandmarks().size(); i++) |
| 129 | + { |
| 130 | + auto landmarkPair = sfmData.getLandmarks().begin(); |
| 131 | + std::advance(landmarkPair, i); |
| 132 | + const sfmData::Landmark& landmark = landmarkPair->second; |
| 133 | + |
| 134 | + // compute landmark pixSize |
| 135 | + double pixSize = 0.; |
| 136 | + int n = 0; |
| 137 | + for(const auto& observationPair : landmark.observations) |
| 138 | + { |
| 139 | + const IndexT viewId = observationPair.first; |
| 140 | + auto d = mp.getCamPixelSize(Point3d(landmark.X.x(), landmark.X.y(), landmark.X.z()), |
| 141 | + mp.getIndexFromViewId(viewId), observationPair.second.scale); |
| 142 | + if(d < 0.) |
| 143 | + d = 0.; |
| 144 | + pixSize += d; |
| 145 | + if(pixSize < 0.) |
| 146 | + pixSize = 0.; |
| 147 | + n++; |
| 148 | + } |
| 149 | + if(pixSize < 0.) |
| 150 | + pixSize = 0.; |
| 151 | + pixSize /= n; |
| 152 | + if(pixSize < 0.) |
| 153 | + pixSize = 0.; |
| 154 | + |
| 155 | + landmarksPixSize[i] = std::pair<double, IndexT>(pixSize, landmarkPair->first); |
| 156 | + } |
| 157 | + |
| 158 | + // sort landmarks by descending pixSize order |
| 159 | + std::stable_sort(landmarksPixSize.begin(), landmarksPixSize.end(), std::greater<>{}); |
| 160 | + |
| 161 | + //// take only best observations |
| 162 | + //observationScores.resize(maxNbObservationsPerLandmark); |
| 163 | + |
| 164 | + |
| 165 | + |
| 166 | + //// replace the observations |
| 167 | + //Observations filteredObservations; |
| 168 | + //for(auto observationScorePair : observationScores) |
| 169 | + //{ |
| 170 | + // filteredObservations[observationScorePair.second] = landmark.observations[observationScorePair.second]; |
| 171 | + //} |
| 172 | + //landmark.observations = filteredObservations; |
| 173 | + return true; |
| 174 | +} |
| 175 | + |
| 176 | +bool filterObservations(SfMData& sfmData, int maxNbObservationsPerLandmark) |
44 | 177 | { |
45 | 178 | #pragma omp parallel for |
46 | 179 | for(auto i = 0; i < sfmData.getLandmarks().size(); i++) |
@@ -134,7 +267,10 @@ int aliceVision_main(int argc, char *argv[]) |
134 | 267 | } |
135 | 268 |
|
136 | 269 | // filter SfM data |
137 | | - if(filterSfMData(sfmData, maxNbObservationsPerLandmark)) |
| 270 | + bool success2 = filterLandmarks(sfmData); |
| 271 | + bool success1 = filterObservations(sfmData, maxNbObservationsPerLandmark); |
| 272 | + |
| 273 | + if(success1) |
138 | 274 | { |
139 | 275 | sfmDataIO::Save(sfmData, outputSfmFilename, sfmDataIO::ESfMData::ALL); |
140 | 276 | return EXIT_SUCCESS; |
|
0 commit comments