-
Notifications
You must be signed in to change notification settings - Fork 47
defaultdatabase
Gian Michele Innocenti edited this page Jul 6, 2019
·
4 revisions
This package is meant to run fast parallel analysis and machine learning optimization using modern servers with Python and Pandas. In order to start your analysis you need a list of unmerged flat ROOT TTrees for data and MC. For full compatibility, it is recommended to produce your TTrees using the same format presented in https://github.com/ginnocen/ALICETreeCreator. The TTrees have be saved in a folder preserving the standard Grid folder structure (E.g.production/child_1/0001/AnalysisResults.root).
In this tutorial we will go step by step through the package and you will learn the main functionalities and how to run a real optimization on a small dataset.
case: LcpK0s_multiplicity_test
download:
alice:
activate: false
conversion:
mc:
activate: true
data:
activate: true
skimming:
mc:
activate: true
data:
activate: true
merging:
mc:
activate: true
data:
activate: true
mergingperiods:
mc:
activate: true
data:
activate: true
ml_study:
activate: true
doscancuts: false
applytodatamc: false
doroc: true
doboundary: false
docorrelation: false
docrossvalidation: false
dogridsearch: false
doimportance: false
dolearningcurve: true
dopca: false
dosignifopt: false
doefficiency: false
dotesting: false
dotraining: true
analysis:
data:
doapply: true
domergeapply: true
domergeapplyperiods: true
histomass: true
mc:
doapply: true
domergeapply: true
domergeapplyperiods: true
histomass: true
efficiency: true
'''