-
-
Notifications
You must be signed in to change notification settings - Fork 250
Description
Describe the question you have
Hello maintainers, I want to understand why this scenario happens, I have the following timeseries
import pandas as pd
data = {
'date': pd.date_range(start='2023-01-01', periods=10, freq='MS'),
'value': [1, 3, 3, 4, 3, 2, 1, 1, 3, 2]
}
df = pd.DataFrame(data)
df.set_index('date', inplace=True)
Which yields this ts
value
date
2023-01-01 1
2023-02-01 3
2023-03-01 3
2023-04-01 4
2023-05-01 3
2023-06-01 2
2023-07-01 1
2023-08-01 1
2023-09-01 3
2023-10-01 2
and when I try and fit the model, it yields these information:
fitted_model = auto_arima(
y=df['value'],
max_iter=15,
max_d=1,
method='nm',
seasonal=False)
fitted_model
and when I try and fit the model, it yields these information:
ARIMA(2,0,2)(0,0,0)[0]
Then I try to predict
fitted_model.predict(
n_periods=2,
return_conf_int=False)
and shows below error
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In [1047], line 1
----> 1 fitted_model.predict(
2 n_periods=2,
3 return_conf_int=False)
File ~/cluster-env/clonedenv/lib/python3.10/site-packages/pmdarima/arima/arima.py:791, in ARIMA.predict(self, n_periods, X, return_conf_int, alpha, **kwargs)
788 arima = self.arima_res_
789 end = arima.nobs + n_periods - 1
--> 791 f, conf_int = _seasonal_prediction_with_confidence(
792 arima_res=arima,
793 start=arima.nobs,
794 end=end,
795 X=X,
796 alpha=alpha)
798 if return_conf_int:
799 # The confidence intervals may be a Pandas frame if it comes from
800 # SARIMAX & we want Numpy. We will to duck type it so we don't add
801 # new explicit requirements for the package
802 return f, check_array(conf_int, force_all_finite=False)
File ~/cluster-env/clonedenv/lib/python3.10/site-packages/pmdarima/arima/arima.py:203, in _seasonal_prediction_with_confidence(arima_res, start, end, X, alpha, **kwargs)
199 conf_int[:, 0] = f - q * np.sqrt(var)
200 conf_int[:, 1] = f + q * np.sqrt(var)
202 return check_endog(f, dtype=None, copy=False), \
--> 203 check_array(conf_int, copy=False, dtype=None)
File ~/cluster-env/clonedenv/lib/python3.10/site-packages/sklearn/utils/validation.py:899, in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, estimator, input_name)
893 raise ValueError(
894 "Found array with dim %d. %s expected <= 2."
895 % (array.ndim, estimator_name)
896 )
898 if force_all_finite:
--> 899 _assert_all_finite(
900 array,
901 input_name=input_name,
902 estimator_name=estimator_name,
903 allow_nan=force_all_finite == "allow-nan",
904 )
906 if ensure_min_samples > 0:
907 n_samples = _num_samples(array)
File ~/cluster-env/clonedenv/lib/python3.10/site-packages/sklearn/utils/validation.py:146, in _assert_all_finite(X, allow_nan, msg_dtype, estimator_name, input_name)
124 if (
125 not allow_nan
126 and estimator_name
(...)
130 # Improve the error message on how to handle missing values in
131 # scikit-learn.
132 msg_err += (
133 f"\n{estimator_name} does not accept missing values"
134 " encoded as NaN natively. For supervised learning, you might want"
(...)
144 "#estimators-that-handle-nan-values"
145 )
--> 146 raise ValueError(msg_err)
148 # for object dtype data, we only check for NaNs (GH-13254)
149 elif X.dtype == np.dtype("object") and not allow_nan:
ValueError: Input contains NaN.
However when I increase the data by one data point
data = {
'date': pd.date_range(start='2023-01-01', periods=11, freq='MS'),
'value': [1, 3, 3, 4, 3, 2, 1, 1, 3, 2, 2]
}
or when I change to these values
data = {
'date': pd.date_range(start='2023-01-01', periods=10, freq='MS'),
'value': [5, 8, 11, 4, 6, 6, 6, 5, 6, 9]
}
or when setting the seasonal parameter to True for the same exact data
The model returned is ARIMA(0,0,0)(0,0,0)[0] intercept and the predictions are fine without errors
Another work around is to put a guradrail of maximum p, q, d to be 1 and it also works.
Can you help me understand why this happens? Is placing a guardrail the correct way to fix this?
Thank you in advance :)
Here is a video of a cute Otter as a digital bribe: https://www.youtube.com/watch?v=8O8iEz2p7rQ
Can you help me understand this behaviour?
Versions (if necessary)
System:
python: 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:35:26) [GCC 10.4.0]
executable: /home/trusted-service-user/cluster-env/clonedenv/bin/python
machine: Linux-4.15.0-1174-azure-x86_64-with-glibc2.27
Python dependencies:
pip: 23.3
setuptools: 65.5.1
sklearn: 1.1.3
statsmodels: 0.14.0
numpy: 1.23.4
scipy: 1.10.1
Cython: 0.29.32
pandas: 1.5.3
joblib: 1.3.2
pmdarima: 1.8.5
Linux-4.15.0-1174-azure-x86_64-with-glibc2.27
Python 3.10.6 | packaged by conda-forge | (main, Aug 22 2022, 20:35:26) [GCC 10.4.0]
pmdarima 1.8.5
NumPy 1.23.4
SciPy 1.10.1
Scikit-Learn 1.1.3
Statsmodels 0.14.0
/home/trusted-service-user/cluster-env/clonedenv/lib/python3.10/site-packages/_distutils_hack/__init__.py:33: UserWarning: Setuptools is replacing distutils.
warnings.warn("Setuptools is replacing distutils.")