|
| 1 | +import random |
| 2 | +import math |
| 3 | +import pandas as pd |
| 4 | +from sklearn.model_selection import LeaveOneOut |
| 5 | +from sklearn.model_selection import cross_val_score |
| 6 | +from sklearn import svm |
| 7 | +import numpy as np |
| 8 | + |
| 9 | + |
| 10 | +class FireflyAlgorithm(): |
| 11 | + |
| 12 | + def __init__(self, function): |
| 13 | + self.D = 121 # dimension of the problem (Gene number) |
| 14 | + self.NP = 100 # population size (Firefly number) |
| 15 | + self.nFES = 1 # number of function evaluations (repeate number) |
| 16 | + self.alpha = 1 # alpha parameter,(randomization parameter) |
| 17 | + self.betamin = 0.5 # beta parameter |
| 18 | + self.gamma = 1 # gamma parameter (light intensity coefficency) |
| 19 | + # sort of fireflies according to fitness value |
| 20 | + self.Index = [0] * self.NP |
| 21 | + self.Fireflies = [[np.random.rand() for i in range(self.D)] for j in range(self.NP)] # firefly agents, |
| 22 | + self.Fireflies_tmp = [[np.random.rand() for i in range(self.D)] for j in range( |
| 23 | + self.NP)] # intermediate pop |
| 24 | + self.Fitness = [0.0] * self.NP # fitness values (Accuracy) |
| 25 | + self.I = [0.0] * self.NP # light intensity |
| 26 | + self.nbest = [0.0] * self.NP # the best solution found so far |
| 27 | + self.LB = 0 # lower bound |
| 28 | + self.UB = 1 # upper bound |
| 29 | + self.fbest = None # the best |
| 30 | + self.evaluations = 0 |
| 31 | + self.Fun = function |
| 32 | + |
| 33 | + def alpha_new(self, a): |
| 34 | + delta = 1.0 - math.pow((math.pow(10.0, -4.0) / 0.9), 1.0 / float(a)) |
| 35 | + return (1 - delta) * self.alpha |
| 36 | + |
| 37 | + def sort_ffa(self): # implementation of bubble sort |
| 38 | + |
| 39 | + for i in range(self.NP): |
| 40 | + self.Index[i] = i |
| 41 | + |
| 42 | + for i in range(0, (self.NP - 1)): |
| 43 | + j = i + 1 |
| 44 | + for j in range(j, self.NP): |
| 45 | + if (self.I[i] > self.I[j]): |
| 46 | + z = self.I[i] # exchange attractiveness |
| 47 | + self.I[i] = self.I[j] |
| 48 | + self.I[j] = z |
| 49 | + z = self.Fitness[i] # exchange fitness |
| 50 | + self.Fitness[i] = self.Fitness[j] |
| 51 | + self.Fitness[j] = z |
| 52 | + z = self.Index[i] # exchange indexes |
| 53 | + self.Index[i] = self.Index[j] |
| 54 | + self.Index[j] = z |
| 55 | + |
| 56 | + |
| 57 | + def replace_ffa(self): # replace the old population according to the new Index values |
| 58 | + # copy original population to a temporary area |
| 59 | + for i in range(self.NP): |
| 60 | + for j in range(self.D): |
| 61 | + self.Fireflies_tmp[i][j] = self.Fireflies[i][j] |
| 62 | + |
| 63 | + # generational selection in the sense of an EA |
| 64 | + for i in range(self.NP): |
| 65 | + for j in range(self.D): |
| 66 | + self.Fireflies[i][j] = self.Fireflies_tmp[self.Index[i]][j] |
| 67 | + |
| 68 | + def FindLimits(self, k): |
| 69 | + for i in range(self.D): |
| 70 | + if self.Fireflies[k][i] < self.LB: |
| 71 | + self.Fireflies[k][i] = self.LB |
| 72 | + if self.Fireflies[k][i] > self.UB: |
| 73 | + self.Fireflies[k][i] = self.UB |
| 74 | + |
| 75 | + def move_ffa(self): |
| 76 | + for i in range(self.NP): |
| 77 | + scale = abs(self.UB - self.LB) |
| 78 | + for j in range(self.NP): |
| 79 | + r = 0.0 |
| 80 | + for k in range(self.D): |
| 81 | + r += (self.Fireflies[i][k] - self.Fireflies[j][k]) * \ |
| 82 | + (self.Fireflies[i][k] - self.Fireflies[j][k]) |
| 83 | + r = math.sqrt(r) |
| 84 | + if self.I[i] > self.I[j]: # brighter and more attractive |
| 85 | + beta0 = 1.0 |
| 86 | + beta = (beta0 - self.betamin) * math.exp(-self.gamma * math.pow(r, 2.0)) + self.betamin |
| 87 | + for k in range(self.D): |
| 88 | + r = random.uniform(0, 1) |
| 89 | + tmpf = self.alpha * (r - 0.5) * scale |
| 90 | + self.Fireflies[i][k] = self.Fireflies[i][ |
| 91 | + k] * (1.0 - beta) + self.Fireflies_tmp[j][k] * beta + tmpf |
| 92 | + self.FindLimits(i) |
| 93 | + |
| 94 | + def Run(self): |
| 95 | + while self.evaluations < self.nFES: |
| 96 | + |
| 97 | + # optional reducing of alpha |
| 98 | + #self.alpha = self.alpha_new(self.nFES/self.NP) |
| 99 | + self.evaluations = self.evaluations + 1 |
| 100 | + # evaluate new solutions |
| 101 | + for i in range(self.NP): |
| 102 | + self.Fitness[i] = self.Fun(self.Fireflies[i]) |
| 103 | + |
| 104 | + self.I[i] = self.Fitness[i] |
| 105 | + |
| 106 | + |
| 107 | + # ranking fireflies by their light intensit |
| 108 | + self.sort_ffa() |
| 109 | + # replace old population |
| 110 | + self.replace_ffa() |
| 111 | + # move all fireflies to the better locations |
| 112 | + self.move_ffa() |
| 113 | + |
| 114 | + bestFirefly = self.Fireflies[self.NP - 1] |
| 115 | + |
| 116 | + return bestFirefly |
| 117 | + |
| 118 | +#File which applied |
| 119 | +file_ = "File Name: " |
| 120 | + |
| 121 | +df = pd.read_excel(file_) |
| 122 | + |
| 123 | +y = df['Label'].values |
| 124 | +X = df.drop('Label', axis=1).values |
| 125 | + |
| 126 | + |
| 127 | +def evaluation(feature_possibilities): |
| 128 | + feature_possibilities = np.round(feature_possibilities) |
| 129 | + |
| 130 | + feature_possibilities = feature_possibilities > np.float32(0.5) |
| 131 | + |
| 132 | + selectedX = X[:, feature_possibilities] |
| 133 | + |
| 134 | + s = svm.SVC(kernel="poly", C=1) |
| 135 | + |
| 136 | + loocv = LeaveOneOut() |
| 137 | + evaluation = cross_val_score(s, selectedX, y, cv=loocv) |
| 138 | + |
| 139 | + return evaluation.mean() |
| 140 | + |
| 141 | +Algorithm = FireflyAlgorithm(evaluation) |
| 142 | +Best = Algorithm.Run() |
| 143 | + |
| 144 | + |
| 145 | +a = np.round(Best) |
| 146 | + |
| 147 | +feature_take_or_not = a > np.float32(0.7) |
| 148 | + |
| 149 | +print(feature_take_or_not) |
| 150 | + |
| 151 | +print(Best) |
| 152 | + |
| 153 | +true_number = np.array(np.unique(feature_take_or_not, return_counts=True)).T |
| 154 | + |
| 155 | + |
| 156 | +bestX = X[:, gene_take_or_not] |
| 157 | + |
| 158 | +print(true_number) |
| 159 | + |
| 160 | +s = svm.SVC(kernel="linear") |
| 161 | +loocv = LeaveOneOut() |
| 162 | +evaluation = cross_val_score(s, bestX, y, cv=loocv) |
| 163 | +print("Final Accuracy: %.6f%% (%.6f%%)" % (evaluation.mean(), evaluation.std())) |
| 164 | + |
| 165 | +total = ((df.drop("Label", axis=1).columns.values, gene_take_or_not, Best)) |
| 166 | + |
| 167 | +df2 = pd.DataFrame(total, ["Features", "Selection", "Importance"]) |
0 commit comments