|
| 1 | +''' |
| 2 | +Adapted from https://github.com/lupantech/ScienceQA |
| 3 | +''' |
| 4 | + |
| 5 | +import re |
| 6 | +from rouge import Rouge |
| 7 | +from nltk.translate.bleu_score import sentence_bleu |
| 8 | +from sentence_transformers import util |
| 9 | + |
| 10 | +######################## |
| 11 | +## BLEU |
| 12 | +######################## |
| 13 | +def tokenize(text): |
| 14 | + tokens = re.split(r'\s|\.', text) |
| 15 | + tokens = [t for t in tokens if len(t) > 0] |
| 16 | + return tokens |
| 17 | + |
| 18 | + |
| 19 | +def bleu_score(reference, hypothesis, gram): |
| 20 | + reference_tokens = tokenize(reference) |
| 21 | + hypothesis_tokens = tokenize(hypothesis) |
| 22 | + |
| 23 | + if gram == 1: |
| 24 | + bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1., )) # BELU-1 |
| 25 | + elif gram == 2: |
| 26 | + bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1. / 2., 1. / 2.)) # BELU-2 |
| 27 | + elif gram == 3: |
| 28 | + bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1. / 3., 1. / 3., 1. / 3.)) # BELU-3 |
| 29 | + elif gram == 4: |
| 30 | + bleu = sentence_bleu([reference_tokens], hypothesis_tokens, (1. / 4., 1. / 4., 1. / 4., 1. / 4.)) # BELU-4 |
| 31 | + |
| 32 | + return bleu |
| 33 | + |
| 34 | + |
| 35 | +def caculate_bleu(results, data, gram): |
| 36 | + bleus = [] |
| 37 | + for qid, output in results.items(): |
| 38 | + prediction = output |
| 39 | + target = data[qid] |
| 40 | + target = target.strip() |
| 41 | + if target == "": |
| 42 | + continue |
| 43 | + bleu = bleu_score(target, prediction, gram) |
| 44 | + bleus.append(bleu) |
| 45 | + |
| 46 | + avg_bleu = sum(bleus) / len(bleus) |
| 47 | + |
| 48 | + return avg_bleu |
| 49 | + |
| 50 | + |
| 51 | +######################## |
| 52 | +## Rouge-L |
| 53 | +######################## |
| 54 | +def score_rouge(str1, str2): |
| 55 | + rouge = Rouge(metrics=["rouge-l"]) |
| 56 | + scores = rouge.get_scores(str1, str2, avg=True) |
| 57 | + rouge_l = scores['rouge-l']['f'] |
| 58 | + return rouge_l |
| 59 | + |
| 60 | + |
| 61 | +def caculate_rouge(results, data): |
| 62 | + rouges = [] |
| 63 | + for qid, output in results.items(): |
| 64 | + prediction = output |
| 65 | + target = data[qid] |
| 66 | + target = target.strip() |
| 67 | + if prediction == "": |
| 68 | + continue |
| 69 | + if target == "": |
| 70 | + continue |
| 71 | + rouge = score_rouge(target, prediction) |
| 72 | + rouges.append(rouge) |
| 73 | + |
| 74 | + avg_rouge = sum(rouges) / len(rouges) |
| 75 | + return avg_rouge |
| 76 | + |
| 77 | + |
| 78 | +######################## |
| 79 | +## Sentence Similarity |
| 80 | +######################## |
| 81 | +def similariry_score(str1, str2, model): |
| 82 | + # compute embedding for both lists |
| 83 | + embedding_1 = model.encode(str1, convert_to_tensor=True) |
| 84 | + embedding_2 = model.encode(str2, convert_to_tensor=True) |
| 85 | + score = util.pytorch_cos_sim(embedding_1, embedding_2).item() |
| 86 | + return score |
| 87 | + |
| 88 | + |
| 89 | +def caculate_similariry(results, data, model): |
| 90 | + scores = [] |
| 91 | + for qid, output in results.items(): |
| 92 | + prediction = output |
| 93 | + target = data[qid] |
| 94 | + target = target.strip() |
| 95 | + |
| 96 | + score = similariry_score(target, prediction, model) |
| 97 | + scores.append(score) |
| 98 | + |
| 99 | + avg_score = sum(scores) / len(scores) |
| 100 | + return avg_score |
0 commit comments