|
| 1 | +//------------------------------------------------------------------------------ |
| 2 | +// <copyright file="NewTiledGpuMatrixMultiplyOperation.cs" author="ameritusweb" date="5/2/2023"> |
| 3 | +// Copyright (c) 2023 ameritusweb All rights reserved. |
| 4 | +// </copyright> |
| 5 | +//------------------------------------------------------------------------------ |
| 6 | +namespace ParallelReverseAutoDiff.RMAD |
| 7 | +{ |
| 8 | + using System; |
| 9 | + using System.Linq; |
| 10 | + using ILGPU; |
| 11 | + using ILGPU.Runtime; |
| 12 | + using ParallelReverseAutoDiff.Exceptions; |
| 13 | + using ParallelReverseAutoDiff.GravNetExample.Common; |
| 14 | + |
| 15 | + /// <summary> |
| 16 | + /// GPU Tiled matrix multiplication operation. |
| 17 | + /// </summary> |
| 18 | + public class NewTiledGpuMatrixMultiplyOperation : Operation |
| 19 | + { |
| 20 | + private const int TILESIZE = 8; |
| 21 | + private Matrix[,] input1; |
| 22 | + private Matrix[,] input2; |
| 23 | + private Matrix[,] output; |
| 24 | + private Matrix[,] dInput1; |
| 25 | + private Matrix[,] dInput2; |
| 26 | + |
| 27 | + /// <summary> |
| 28 | + /// A common method for instantiating an operation. |
| 29 | + /// </summary> |
| 30 | + /// <param name="net">The neural network.</param> |
| 31 | + /// <returns>The instantiated operation.</returns> |
| 32 | + public static IOperation Instantiate(NeuralNetwork net) |
| 33 | + { |
| 34 | + return new NewTiledGpuMatrixMultiplyOperation(); |
| 35 | + } |
| 36 | + |
| 37 | + /// <summary> |
| 38 | + /// The tiled matrix multiplication kernel that runs on the accelerated device. |
| 39 | + /// </summary> |
| 40 | + /// <param name="aView">An input matrix of size MxK.</param> |
| 41 | + /// <param name="bView">An input matrix of size KxN.</param> |
| 42 | + /// <param name="cView">An output matrix of size MxN.</param> |
| 43 | + public static void MatrixMultiplyTiledKernel( |
| 44 | + ArrayView2D<double, Stride2D.DenseX> aView, |
| 45 | + ArrayView2D<double, Stride2D.DenseX> bView, |
| 46 | + ArrayView2D<double, Stride2D.DenseX> cView) |
| 47 | + { |
| 48 | + var global = Grid.GlobalIndex.XY; |
| 49 | + var x = Group.IdxX; |
| 50 | + var y = Group.IdxY; |
| 51 | + |
| 52 | + var aTile = SharedMemory.Allocate2D<double, Stride2D.DenseX>(new Index2D(TILESIZE, TILESIZE), new Stride2D.DenseX(TILESIZE)); |
| 53 | + var bTile = SharedMemory.Allocate2D<double, Stride2D.DenseX>(new Index2D(TILESIZE, TILESIZE), new Stride2D.DenseX(TILESIZE)); |
| 54 | + |
| 55 | + var total = 0.0d; // Initialize accumulator for sums across tiles |
| 56 | + |
| 57 | + for (var i = 0; i < aView.IntExtent.Y; i += TILESIZE) |
| 58 | + { |
| 59 | + var sum = 0.0d; |
| 60 | + |
| 61 | + if (global.X < aView.IntExtent.X && y + i < aView.IntExtent.Y) |
| 62 | + { |
| 63 | + aTile[x, y] = aView[global.X, y + i]; |
| 64 | + } |
| 65 | + else |
| 66 | + { |
| 67 | + aTile[x, y] = 0; |
| 68 | + } |
| 69 | + |
| 70 | + if (x + i < bView.IntExtent.X && global.Y < bView.IntExtent.Y) |
| 71 | + { |
| 72 | + bTile[x, y] = bView[x + i, global.Y]; |
| 73 | + } |
| 74 | + else |
| 75 | + { |
| 76 | + bTile[x, y] = 0; |
| 77 | + } |
| 78 | + |
| 79 | + Group.Barrier(); |
| 80 | + |
| 81 | + var kk = 0; |
| 82 | + |
| 83 | + for (var k = 0; k < TILESIZE; k++) |
| 84 | + { |
| 85 | + sum += aTile[new Index2D(x, k)] * bTile[new Index2D(k, y)]; |
| 86 | + } |
| 87 | + |
| 88 | + Group.Barrier(); |
| 89 | + |
| 90 | + total += sum; |
| 91 | + } |
| 92 | + |
| 93 | + if (global.X < cView.IntExtent.X && global.Y < cView.IntExtent.Y) |
| 94 | + { |
| 95 | + cView[global] = total; |
| 96 | + } |
| 97 | + } |
| 98 | + |
| 99 | + /// <summary> |
| 100 | + /// Performs the forward operation for the matrix multiply function. |
| 101 | + /// </summary> |
| 102 | + /// <param name="input1">The first input to the matrix multiply operation.</param> |
| 103 | + /// <param name="input2">The second input to the matrix multiply operation.</param> |
| 104 | + /// <returns>The output of the matrix multiply operation.</returns> |
| 105 | + public Matrix Forward(Matrix input1, Matrix input2) |
| 106 | + { |
| 107 | + if (!CudaBlas.Instance.IsInitialized) |
| 108 | + { |
| 109 | + throw new CudaNotInitializedException(); |
| 110 | + } |
| 111 | + |
| 112 | + var brokenInput1 = CommonMatrixUtils.BreakIntoSections(input1, 8); |
| 113 | + var brokenInput2 = CommonMatrixUtils.BreakIntoSections(input2, 8); |
| 114 | + |
| 115 | + this.input1 = new Matrix[brokenInput1.GetLength(0), brokenInput1.GetLength(1)]; |
| 116 | + this.input2 = new Matrix[brokenInput2.GetLength(0), brokenInput2.GetLength(1)]; |
| 117 | + this.output = new Matrix[brokenInput1.GetLength(0), brokenInput2.GetLength(1)]; |
| 118 | + |
| 119 | + Parallel.For(0, 8, i => |
| 120 | + { |
| 121 | + for (int j = 0; j < 8; j++) |
| 122 | + { |
| 123 | + var i1 = brokenInput1[i, j]; |
| 124 | + var i2 = brokenInput2[i, j]; |
| 125 | + |
| 126 | + this.InnerForward(i, j, i1, i2); |
| 127 | + } |
| 128 | + }); |
| 129 | + |
| 130 | + this.Output = CommonMatrixUtils.PieceTogether(this.output); |
| 131 | + return this.Output; |
| 132 | + } |
| 133 | + |
| 134 | + /// <inheritdoc /> |
| 135 | + public override BackwardResult Backward(Matrix dOutput) |
| 136 | + { |
| 137 | + if (!CudaBlas.Instance.IsInitialized) |
| 138 | + { |
| 139 | + throw new CudaNotInitializedException(); |
| 140 | + } |
| 141 | + |
| 142 | + this.dInput1 = new Matrix[this.input1.GetLength(0), this.input1.GetLength(1)]; |
| 143 | + this.dInput2 = new Matrix[this.input2.GetLength(0), this.input2.GetLength(1)]; |
| 144 | + var dOutputSections = CommonMatrixUtils.BreakIntoSections(dOutput, 8); |
| 145 | + |
| 146 | + Parallel.For(0, this.dInput1.GetLength(0), i => |
| 147 | + { |
| 148 | + for (int j = 0; j < this.dInput2.GetLength(1); j++) |
| 149 | + { |
| 150 | + this.InnerBackward(i, j, dOutputSections[i, j]); |
| 151 | + } |
| 152 | + }); |
| 153 | + |
| 154 | + return new BackwardResultBuilder() |
| 155 | + .AddInputGradient(CommonMatrixUtils.PieceTogether(this.dInput1)) |
| 156 | + .AddInputGradient(CommonMatrixUtils.PieceTogether(this.dInput2)) |
| 157 | + .Build(); |
| 158 | + } |
| 159 | + |
| 160 | + /// <summary> |
| 161 | + /// Multiplies two dense matrices and returns the resultant matrix (using tiling). |
| 162 | + /// </summary> |
| 163 | + /// <param name="accelerator">The Accelerator to run the multiplication on.</param> |
| 164 | + /// <param name="a">A dense MxK matrix.</param> |
| 165 | + /// <param name="b">A dense KxN matrix.</param> |
| 166 | + /// <returns>A dense MxN matrix.</returns> |
| 167 | + public double[,] MatrixMultiplyTiled(Accelerator accelerator, double[,] a, double[,] b) |
| 168 | + { |
| 169 | + var m = a.GetLength(0); |
| 170 | + var ka = a.GetLength(1); |
| 171 | + var kb = b.GetLength(0); |
| 172 | + var n = b.GetLength(1); |
| 173 | + |
| 174 | + if (ka != kb) |
| 175 | + { |
| 176 | + throw new ArgumentException($"Cannot multiply {m}x{ka} matrix by {n}x{kb} matrix", nameof(b)); |
| 177 | + } |
| 178 | + |
| 179 | + var kernel = accelerator.LoadStreamKernel< |
| 180 | + ArrayView2D<double, Stride2D.DenseX>, |
| 181 | + ArrayView2D<double, Stride2D.DenseX>, |
| 182 | + ArrayView2D<double, Stride2D.DenseX>>( |
| 183 | + MatrixMultiplyTiledKernel); |
| 184 | + var groupSize = new Index2D(TILESIZE, TILESIZE); |
| 185 | + var numGroups = new Index2D((m + TILESIZE - 1) / TILESIZE, (n + TILESIZE - 1) / TILESIZE); |
| 186 | + |
| 187 | + using var aBuffer = accelerator.Allocate2DDenseX<double>(new Index2D(m, ka)); |
| 188 | + using var bBuffer = accelerator.Allocate2DDenseX<double>(new Index2D(ka, n)); |
| 189 | + using var cBuffer = accelerator.Allocate2DDenseX<double>(new Index2D(m, n)); |
| 190 | + aBuffer.CopyFromCPU(a); |
| 191 | + bBuffer.CopyFromCPU(b); |
| 192 | + |
| 193 | + kernel((numGroups, groupSize), aBuffer, bBuffer, cBuffer); |
| 194 | + |
| 195 | + // Reads data from the GPU buffer into a new CPU array. |
| 196 | + // Implicitly calls accelerator.DefaultStream.Synchronize() to ensure |
| 197 | + // that the kernel and memory copy are completed first. |
| 198 | + return cBuffer.GetAsArray2D(); |
| 199 | + } |
| 200 | + |
| 201 | + private void InnerForward(int ii, int jj, Matrix input1, Matrix input2) |
| 202 | + { |
| 203 | + this.input1[ii, jj] = input1; |
| 204 | + this.input2[ii, jj] = input2; |
| 205 | + int input1Cols = input1[0].Length; |
| 206 | + int input2Rows = input2.Length; |
| 207 | + |
| 208 | + if (input1Cols != input2Rows) |
| 209 | + { |
| 210 | + throw new InvalidOperationException("Input 1 columns do not match Input 2 rows"); |
| 211 | + } |
| 212 | + |
| 213 | + var acceleratedTiledResult = this.MatrixMultiplyTiled(CudaBlas.Instance.Accelerator, this.To2D(input1.ToArray(), false), this.To2D(input2.ToArray(), false)); |
| 214 | + |
| 215 | + this.output[ii, jj] = new Matrix(this.ToJagged(acceleratedTiledResult)); |
| 216 | + } |
| 217 | + |
| 218 | + private void InnerBackward(int ii, int jj, Matrix dOutput) |
| 219 | + { |
| 220 | + // Calculate gradient w.r.t. input1 |
| 221 | + |
| 222 | + // Compute dInput1 using MatrixMultiply |
| 223 | + var acceleratedTiledResult1 = this.MatrixMultiplyTiled(CudaBlas.Instance.Accelerator, this.To2D(dOutput.ToArray(), false), this.To2D(this.input2[ii, jj].ToArray(), true)); |
| 224 | + this.dInput1[ii, jj] = new Matrix(this.ToJagged(acceleratedTiledResult1)); |
| 225 | + |
| 226 | + // Calculate gradient w.r.t. input2 |
| 227 | + |
| 228 | + // Compute dInput2 using MatrixMultiply |
| 229 | + var acceleratedTiledResult2 = this.MatrixMultiplyTiled(CudaBlas.Instance.Accelerator, this.To2D(this.input1[ii, jj].ToArray(), true), this.To2D(dOutput.ToArray(), false)); |
| 230 | + this.dInput2[ii, jj] = new Matrix(this.ToJagged(acceleratedTiledResult2)); |
| 231 | + } |
| 232 | + |
| 233 | + /// <summary> |
| 234 | + /// Converts a jagged array to a 2D array. |
| 235 | + /// </summary> |
| 236 | + /// <param name="source">The jagged array.</param> |
| 237 | + /// <param name="transpose">Whether to transpose the array.</param> |
| 238 | + /// <returns>The 2-D array.</returns> |
| 239 | + private double[,] To2D(double[][] source, bool transpose) |
| 240 | + { |
| 241 | + try |
| 242 | + { |
| 243 | + int firstDim = source.Length; |
| 244 | + int secondDim = source.GroupBy(row => row.Length).Single().Key; // throws InvalidOperationException if source is not rectangular |
| 245 | + |
| 246 | + if (transpose) |
| 247 | + { |
| 248 | + var result = new double[secondDim, firstDim]; |
| 249 | + for (int i = 0; i < secondDim; ++i) |
| 250 | + { |
| 251 | + for (int j = 0; j < firstDim; ++j) |
| 252 | + { |
| 253 | + result[i, j] = source[j][i]; |
| 254 | + } |
| 255 | + } |
| 256 | + |
| 257 | + return result; |
| 258 | + } |
| 259 | + else |
| 260 | + { |
| 261 | + var result = new double[firstDim, secondDim]; |
| 262 | + for (int i = 0; i < firstDim; ++i) |
| 263 | + { |
| 264 | + for (int j = 0; j < secondDim; ++j) |
| 265 | + { |
| 266 | + result[i, j] = source[i][j]; |
| 267 | + } |
| 268 | + } |
| 269 | + |
| 270 | + return result; |
| 271 | + } |
| 272 | + } |
| 273 | + catch (InvalidOperationException) |
| 274 | + { |
| 275 | + throw new InvalidOperationException("The given jagged array is not rectangular."); |
| 276 | + } |
| 277 | + } |
| 278 | + |
| 279 | + /// <summary> |
| 280 | + /// Converts a 2D array to a jagged array. |
| 281 | + /// </summary> |
| 282 | + /// <param name="source">The 2-D array.</param> |
| 283 | + /// <returns>The jagged array.</returns> |
| 284 | + private double[][] ToJagged(double[,] source) |
| 285 | + { |
| 286 | + int firstDim = source.GetLength(0); |
| 287 | + int secondDim = source.GetLength(1); |
| 288 | + var result = new double[firstDim][]; |
| 289 | + |
| 290 | + for (int i = 0; i < firstDim; ++i) |
| 291 | + { |
| 292 | + result[i] = new double[secondDim]; |
| 293 | + for (int j = 0; j < secondDim; ++j) |
| 294 | + { |
| 295 | + result[i][j] = source[i, j]; |
| 296 | + } |
| 297 | + } |
| 298 | + |
| 299 | + return result; |
| 300 | + } |
| 301 | + } |
| 302 | +} |
0 commit comments