@@ -9618,20 +9618,16 @@ static struct ggml_tensor * llm_build_kqv(
96189618 cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
96199619 hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
96209620
9621- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
9622- ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
9623- }
9621+ ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
96249622
96259623 cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
96269624 } else {
96279625 struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
96289626 cb(kq, "kq", il);
96299627
9630- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
9631- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
9632- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
9633- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9634- }
9628+ // note: this op tends to require high floating point range
9629+ // while for some models F16 is enough, for others it is not, so we default to F32 here
9630+ ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
96359631
96369632 if (model.arch == LLM_ARCH_GROK) {
96379633 // need to do the following:
@@ -9640,9 +9636,6 @@ static struct ggml_tensor * llm_build_kqv(
96409636 // kq = 30 * tanh(kq / 30)
96419637 // before the softmax below
96429638
9643- //try from phi2
9644- //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9645-
96469639 kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
96479640 kq = ggml_scale(ctx, kq, 30);
96489641 }
0 commit comments