|
| 1 | +/** |
| 2 | +* @license Apache-2.0 |
| 3 | +* |
| 4 | +* Copyright (c) 2025 The Stdlib Authors. |
| 5 | +* |
| 6 | +* Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | +* you may not use this file except in compliance with the License. |
| 8 | +* You may obtain a copy of the License at |
| 9 | +* |
| 10 | +* http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | +* |
| 12 | +* Unless required by applicable law or agreed to in writing, software |
| 13 | +* distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | +* See the License for the specific language governing permissions and |
| 16 | +* limitations under the License. |
| 17 | +*/ |
| 18 | + |
| 19 | +'use strict'; |
| 20 | + |
| 21 | +// MODULES // |
| 22 | + |
| 23 | +var resolve = require( 'path' ).resolve; |
| 24 | +var tape = require( 'tape' ); |
| 25 | +var abs = require( '@stdlib/math/base/special/abs' ); |
| 26 | +var isnanf = require( '@stdlib/math/base/assert/is-nanf' ); |
| 27 | +var EPS = require( '@stdlib/constants/float64/eps' ); |
| 28 | +var PINF = require( '@stdlib/constants/float64/pinf' ); |
| 29 | +var tryRequire = require( '@stdlib/utils/try-require' ); |
| 30 | + |
| 31 | + |
| 32 | +// VARIABLES // |
| 33 | + |
| 34 | +var hyp2f1 = tryRequire( resolve( __dirname, './../lib/native.js' ) ); |
| 35 | +var opts = { |
| 36 | + 'skip': ( hyp2f1 instanceof Error ) |
| 37 | +}; |
| 38 | + |
| 39 | + |
| 40 | +// FIXTURES // |
| 41 | + |
| 42 | +var basic = require( './fixtures/python/basic.json' ); |
| 43 | +var edgeCases1 = require( './fixtures/python/edge_cases1.json' ); |
| 44 | +var edgeCases2 = require( './fixtures/python/edge_cases2.json' ); |
| 45 | +var edgeCases3 = require( './fixtures/python/edge_cases3.json' ); |
| 46 | +var edgeCases4 = require( './fixtures/python/edge_cases4.json' ); |
| 47 | +var outliers = require( './fixtures/python/outliers.json' ); |
| 48 | + |
| 49 | + |
| 50 | +// TESTS // |
| 51 | + |
| 52 | +tape( 'main export is a function', opts, function test( t ) { |
| 53 | + t.ok( true, __filename ); |
| 54 | + t.strictEqual( typeof hyp2f1, 'function', 'main export is a function' ); |
| 55 | + t.end(); |
| 56 | +}); |
| 57 | + |
| 58 | +tape( 'the function returns `1` if `x` is 0', opts, function test( t ) { |
| 59 | + var v; |
| 60 | + |
| 61 | + v = hyp2f1( 1.0, 1.0, 1.0, 0.0 ); |
| 62 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 63 | + |
| 64 | + v = hyp2f1( 1.5, 2.5, 3.5, 0.0 ); |
| 65 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 66 | + |
| 67 | + v = hyp2f1( -1, 4, 2, 0.0 ); |
| 68 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 69 | + |
| 70 | + t.end(); |
| 71 | +}); |
| 72 | + |
| 73 | +tape( 'the function returns `NaN` if provided `NaN`', opts, function test( t ) { |
| 74 | + var v; |
| 75 | + |
| 76 | + v = hyp2f1( NaN, 3.0, 2.0, 0.5 ); |
| 77 | + t.equal( isnanf( v ), true, 'returns expected value' ); |
| 78 | + |
| 79 | + v = hyp2f1( 0.0, NaN, 2.0, 0.5 ); |
| 80 | + t.equal( isnanf( v ), true, 'returns expected value' ); |
| 81 | + |
| 82 | + v = hyp2f1( 0.0, 3.0, NaN, 0.5 ); |
| 83 | + t.equal( isnanf( v ), true, 'returns expected value' ); |
| 84 | + |
| 85 | + v = hyp2f1( 0.0, 3.0, 2.0, NaN ); |
| 86 | + t.equal( isnanf( v ), true, 'returns expected value' ); |
| 87 | + |
| 88 | + t.end(); |
| 89 | +}); |
| 90 | + |
| 91 | +tape( 'the function returns `1` if either `a` or `b` is 0 and `c` is not 0', opts, function test( t ) { |
| 92 | + var v; |
| 93 | + |
| 94 | + v = hyp2f1( 0.0, 3.0, 2.0, 0.5 ); |
| 95 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 96 | + |
| 97 | + v = hyp2f1( 0.0, -2.0, 4.0, 0.3 ); |
| 98 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 99 | + |
| 100 | + v = hyp2f1( 3.0, 0.0, 2.0, 0.5 ); |
| 101 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 102 | + |
| 103 | + v = hyp2f1( -2.0, 0.0, 4.0, 0.3 ); |
| 104 | + t.strictEqual( v, 1.0, 'returns expected value' ); |
| 105 | + |
| 106 | + t.end(); |
| 107 | +}); |
| 108 | + |
| 109 | +tape( 'the function returns `PINF` when `c <= a + b`, `x === 1`, and neither `a` nor `b` are nonpositive integers', opts, function test( t ) { |
| 110 | + var v; |
| 111 | + |
| 112 | + v = hyp2f1( 3.0, 4.0, 7.0, 1.0 ); |
| 113 | + console.log(v); |
| 114 | + t.strictEqual( v, PINF, 'returns expected value' ); |
| 115 | + |
| 116 | + v = hyp2f1( 3.5, 4.5, 8.0, 1.0 ); |
| 117 | + t.strictEqual( v, PINF, 'returns expected value' ); |
| 118 | + |
| 119 | + v = hyp2f1( 3.5, 4.5, 8.0, 1.0 ); |
| 120 | + t.strictEqual( v, PINF, 'returns expected value' ); |
| 121 | + |
| 122 | + t.end(); |
| 123 | +}); |
| 124 | + |
| 125 | +tape( 'the function correctly evaluates the hypergeometric function', opts, function test( t ) { |
| 126 | + var expected; |
| 127 | + var delta; |
| 128 | + var tol; |
| 129 | + var a; |
| 130 | + var b; |
| 131 | + var c; |
| 132 | + var x; |
| 133 | + var v; |
| 134 | + var i; |
| 135 | + |
| 136 | + a = basic.a; |
| 137 | + b = basic.b; |
| 138 | + c = basic.c; |
| 139 | + x = basic.x; |
| 140 | + expected = basic.expected; |
| 141 | + |
| 142 | + for ( i = 0; i < x.length; i++ ) { |
| 143 | + v = hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ); |
| 144 | + if ( expected[ i ] === 'PINF' ) { |
| 145 | + t.equal( v, PINF, 'returns expected value' ); |
| 146 | + continue; |
| 147 | + } |
| 148 | + delta = abs( v - expected[ i ] ); |
| 149 | + tol = EPS * abs( expected[ i ] ); |
| 150 | + t.ok( delta <= tol, 'within tolerance. a: ' + a[ i ] + ' b: ' + b[ i ] + ' c: ' + c[ i ] + ' x: ' + x[ i ] + '. Value: ' + v + '. Expected: ' + expected[ i ] + '. Delta: ' + delta + '. Tolerance: ' + tol + '.' ); |
| 151 | + } |
| 152 | + t.end(); |
| 153 | +}); |
| 154 | + |
| 155 | +tape( 'the function correctly evaluates the hypergeometric function', opts, function test( t ) { |
| 156 | + var expected; |
| 157 | + var delta; |
| 158 | + var tol; |
| 159 | + var a; |
| 160 | + var b; |
| 161 | + var c; |
| 162 | + var x; |
| 163 | + var v; |
| 164 | + var i; |
| 165 | + |
| 166 | + a = edgeCases1.a; |
| 167 | + b = edgeCases1.b; |
| 168 | + c = edgeCases1.c; |
| 169 | + x = edgeCases1.x; |
| 170 | + expected = edgeCases1.expected; |
| 171 | + |
| 172 | + for ( i = 0; i < x.length; i++ ) { |
| 173 | + v = hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ); |
| 174 | + if ( expected[ i ] === 'PINF' ) { |
| 175 | + t.equal( v, PINF, 'returns expected value' ); |
| 176 | + continue; |
| 177 | + } |
| 178 | + delta = abs( v - expected[ i ] ); |
| 179 | + tol = 1.2 * EPS * abs( expected[ i ] ); |
| 180 | + t.ok( delta <= tol, 'within tolerance. a: ' + a[ i ] + ' b: ' + b[ i ] + ' c: ' + c[ i ] + ' x: ' + x[ i ] + '. Value: ' + v + '. Expected: ' + expected[ i ] + '. Delta: ' + delta + '. Tolerance: ' + tol + '.' ); |
| 181 | + } |
| 182 | + t.end(); |
| 183 | +}); |
| 184 | + |
| 185 | +tape( 'the function correctly evaluates the hypergeometric function', opts, function test( t ) { |
| 186 | + var expected; |
| 187 | + var delta; |
| 188 | + var tol; |
| 189 | + var a; |
| 190 | + var b; |
| 191 | + var c; |
| 192 | + var x; |
| 193 | + var v; |
| 194 | + var i; |
| 195 | + |
| 196 | + a = edgeCases2.a; |
| 197 | + b = edgeCases2.b; |
| 198 | + c = edgeCases2.c; |
| 199 | + x = edgeCases2.x; |
| 200 | + expected = edgeCases2.expected; |
| 201 | + |
| 202 | + for ( i = 0; i < x.length; i++ ) { |
| 203 | + v = hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ); |
| 204 | + if ( expected[ i ] === 'PINF' ) { |
| 205 | + t.equal( v, PINF, 'returns expected value' ); |
| 206 | + continue; |
| 207 | + } |
| 208 | + delta = abs( v - expected[ i ] ); |
| 209 | + tol = 24.0 * EPS * abs( expected[ i ] ); |
| 210 | + t.ok( delta <= tol, 'within tolerance. a: ' + a[ i ] + ' b: ' + b[ i ] + ' c: ' + c[ i ] + ' x: ' + x[ i ] + '. Value: ' + v + '. Expected: ' + expected[ i ] + '. Delta: ' + delta + '. Tolerance: ' + tol + '.' ); |
| 211 | + } |
| 212 | + t.end(); |
| 213 | +}); |
| 214 | + |
| 215 | +tape( 'the function correctly evaluates the hypergeometric function', opts, function test( t ) { |
| 216 | + var expected; |
| 217 | + var delta; |
| 218 | + var tol; |
| 219 | + var a; |
| 220 | + var b; |
| 221 | + var c; |
| 222 | + var x; |
| 223 | + var v; |
| 224 | + var i; |
| 225 | + |
| 226 | + a = edgeCases3.a; |
| 227 | + b = edgeCases3.b; |
| 228 | + c = edgeCases3.c; |
| 229 | + x = edgeCases3.x; |
| 230 | + expected = edgeCases3.expected; |
| 231 | + |
| 232 | + for ( i = 0; i < x.length; i++ ) { |
| 233 | + v = hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ); |
| 234 | + if ( expected[ i ] === 'PINF' ) { |
| 235 | + t.equal( v, PINF, 'returns expected value' ); |
| 236 | + continue; |
| 237 | + } |
| 238 | + delta = abs( v - expected[ i ] ); |
| 239 | + tol = 32.0 * EPS * abs( expected[ i ] ); |
| 240 | + t.ok( delta <= tol, 'within tolerance. a: ' + a[ i ] + ' b: ' + b[ i ] + ' c: ' + c[ i ] + ' x: ' + x[ i ] + '. Value: ' + v + '. Expected: ' + expected[ i ] + '. Delta: ' + delta + '. Tolerance: ' + tol + '.' ); |
| 241 | + } |
| 242 | + t.end(); |
| 243 | +}); |
| 244 | + |
| 245 | +tape( 'the function correctly evaluates the hypergeometric function', opts, function test( t ) { |
| 246 | + var expected; |
| 247 | + var delta; |
| 248 | + var tol; |
| 249 | + var a; |
| 250 | + var b; |
| 251 | + var c; |
| 252 | + var x; |
| 253 | + var v; |
| 254 | + var i; |
| 255 | + |
| 256 | + a = edgeCases4.a; |
| 257 | + b = edgeCases4.b; |
| 258 | + c = edgeCases4.c; |
| 259 | + x = edgeCases4.x; |
| 260 | + expected = edgeCases4.expected; |
| 261 | + |
| 262 | + for ( i = 0; i < x.length; i++ ) { |
| 263 | + v = hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ); |
| 264 | + if ( expected[ i ] === 'PINF' ) { |
| 265 | + t.equal( v, PINF, 'returns expected value' ); |
| 266 | + continue; |
| 267 | + } |
| 268 | + delta = abs( v - expected[ i ] ); |
| 269 | + tol = 84.0 * EPS * abs( expected[ i ] ); |
| 270 | + t.ok( delta <= tol, 'within tolerance. a: ' + a[ i ] + ' b: ' + b[ i ] + ' c: ' + c[ i ] + ' x: ' + x[ i ] + '. Value: ' + v + '. Expected: ' + expected[ i ] + '. Delta: ' + delta + '. Tolerance: ' + tol + '.' ); |
| 271 | + } |
| 272 | + t.end(); |
| 273 | +}); |
| 274 | + |
| 275 | +tape( 'the function correctly evaluates the hypergeometric function', opts, function test( t ) { |
| 276 | + var expected; |
| 277 | + var delta; |
| 278 | + var tol; |
| 279 | + var a; |
| 280 | + var b; |
| 281 | + var c; |
| 282 | + var x; |
| 283 | + var v; |
| 284 | + var i; |
| 285 | + |
| 286 | + a = outliers.a; |
| 287 | + b = outliers.b; |
| 288 | + c = outliers.c; |
| 289 | + x = outliers.x; |
| 290 | + expected = outliers.expected; |
| 291 | + |
| 292 | + for ( i = 0; i < x.length; i++ ) { |
| 293 | + v = hyp2f1( a[ i ], b[ i ], c[ i ], x[ i ] ); |
| 294 | + delta = abs( v - expected[ i ] ); |
| 295 | + |
| 296 | + /* |
| 297 | + * NOTE: the tolerance is set high in this case due to: |
| 298 | + * |
| 299 | + * 1. The expected values having a very large range, being either very small or very large. |
| 300 | + * 2. The function making a large number of internal calls, leading to accumulated numerical errors. |
| 301 | + */ |
| 302 | + tol = 345877.0 * EPS * abs( expected[ i ] ); |
| 303 | + t.ok( delta <= tol, 'within tolerance. a: ' + a[ i ] + ' b: ' + b[ i ] + ' c: ' + c[ i ] + ' x: ' + x[ i ] + '. Value: ' + v + '. Expected: ' + expected[ i ] + '. Delta: ' + delta + '. Tolerance: ' + tol + '.' ); |
| 304 | + } |
| 305 | + t.end(); |
| 306 | +}); |
0 commit comments