@@ -38,7 +38,10 @@ Run an Agent framework script e.g.:
38
38
- ` uv run agents_mcp_usage/basic_mcp/basic_mcp_use/oai-agent_mcp.py `
39
39
- Requires ` OPENAI_API_KEY ` by default
40
40
41
- Check console or Logfire for output
41
+ - Launch the ADK web UI for visual interaction with the agents:
42
+ - ` make adk_basic_ui `
43
+
44
+ Check console, Logfire, or the ADK web UI for output
42
45
43
46
## Project Overview
44
47
@@ -55,7 +58,7 @@ This project aims to teach:
55
58
56
59
- ** [ agents_mcp_usage/basic_mcp/] ( agents_mcp_usage/basic_mcp/ ) ** - Single MCP server integration examples
57
60
- ** basic_mcp_use/** - Contains basic examples of single MCP usage:
58
- - ` adk_mcp.py ` - Example of using MCP with Google's Agent Development Kit (ADK)
61
+ - ` adk_mcp.py ` - Example of using MCP with Google's Agent Development Kit (ADK 1.3.0 )
59
62
- ` langgraph_mcp.py ` - Example of using MCP with LangGraph
60
63
- ` oai-agent_mcp.py ` - Example of using MCP with OpenAI Agents
61
64
- ` pydantic_mcp.py ` - Example of using MCP with Pydantic-AI
@@ -154,6 +157,9 @@ uv run agents_mcp_usage/basic_mcp/basic_mcp_use/oai-agent_mcp.py
154
157
155
158
# Pydantic-AI example
156
159
uv run agents_mcp_usage/basic_mcp/basic_mcp_use/pydantic_mcp.py
160
+
161
+ # Launch ADK web UI for visual interaction
162
+ make adk_basic_ui
157
163
```
158
164
159
165
More details on basic MCP implementation can be found in the [ basic_mcp README] ( agents_mcp_usage/basic_mcp/README.md ) .
@@ -218,7 +224,7 @@ uv run agents_mcp_usage/multi_mcp/multi_mcp_use/pydantic_mcp.py
218
224
uv run agents_mcp_usage/multi_mcp/eval_multi_mcp/evals_pydantic_mcp.py
219
225
220
226
# Run multi-model benchmarking
221
- uv run agents_mcp_usage/multi_mcp/eval_multi_mcp/run_multi_evals.py --models " gemini-2.5-pro,gemini-2.0-flash" --runs 5 --parallel
227
+ uv run agents_mcp_usage/multi_mcp/eval_multi_mcp/run_multi_evals.py --models " gemini-2.5-pro-preview-06-05 ,gemini-2.0-flash" --runs 5 --parallel
222
228
223
229
# Launch the evaluation dashboard
224
230
uv run streamlit run agents_mcp_usage/multi_mcp/eval_multi_mcp/merbench_ui.py
@@ -258,7 +264,7 @@ uv run agents_mcp_usage/multi_mcp/eval_multi_mcp/evals_pydantic_mcp.py
258
264
259
265
# Multi-model parallel benchmarking
260
266
uv run agents_mcp_usage/multi_mcp/eval_multi_mcp/run_multi_evals.py \
261
- --models " gemini-2.5-pro,gemini-2.0-flash,gemini-2.5-flash-preview-04-17 " \
267
+ --models " gemini-2.5-pro-preview-06-05 ,gemini-2.0-flash,gemini-2.5-flash" \
262
268
--runs 5 \
263
269
--parallel \
264
270
--output-dir ./results
@@ -288,6 +294,11 @@ A key advantage highlighted is flexibility; MCP allows developers to more easily
288
294
``` bash
289
295
make install
290
296
```
297
+
298
+ To use the ADK web UI, run:
299
+ ``` bash
300
+ make adk_basic_ui
301
+ ```
291
302
3 . Set up your environment variables in a ` .env ` file:
292
303
```
293
304
LOGFIRE_TOKEN=your_logfire_token
0 commit comments