Skip to content

Commit 857b53a

Browse files
PProfizigithub-actions[bot]
authored andcommitted
update generated code
1 parent 26a1645 commit 857b53a

File tree

7 files changed

+2
-84
lines changed

7 files changed

+2
-84
lines changed

doc/source/_static/dpf_operators.html

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -14992,8 +14992,7 @@ <h2 class="h2-main">Configurating operators</h2>
1499214992
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="4" ellipsis = "false"></pin-number-optional></td><td><pin-name name="rel_stat_covar_matrix"></pin-name></td><td><req-type typeName="(fields_container)"></req-type></td><td><div class = "pin-des-text"><p>Fields container containing covariance matrices from a psd file: covariance matrix terms for displacement/velocity/acceleration mode-static shapes</p>
1499314993
</div></td></tr></tbody></table></div><h2 class="op-des-h2">Outputs</h2><div><table class="pin-box"><tbody><tr><td><pin-number n="0" ellipsis = "false"></pin-number></td><td><pin-name name="psd"></pin-name></td><td><req-type typeName="(fields_container)"></req-type></td><td><div class = "pin-des-text"><p>PSD solution per label</p>
1499414994
</div></td></tr></tbody></table></div><h2 class="op-des-h2">Configurations</h2><config-spec name="mutex" default="false" doc="If this option is set to true, the shared memory is prevented from being simultaneously accessed by multiple threads." types="bool" ></config-spec><config-spec name="num_threads" default="0" doc="Number of threads to use to run in parallel" types="int32" ></config-spec><config-spec name="run_in_parallel" default="true" doc="Loops are allowed to run in parallel if the value of this config is set to true." types="bool" ></config-spec><h2 class="op-des-h2">Scripting</h2><scripting-part scripting_name="expansion_psd" license="any_dpf_supported_increments" cat="math" plugin="core" cpp-name="expansion::psd"></scripting-part><h2 class="op-des-h2">Changelog</h2><op-changelog content='{"0.0.0":"New","0.0.1":"Fix handling of empty fields in mode shapes."}'></op-changelog></div><div class="operator" id="hdf5dpf generate result file" scripting_name="hdf5dpf_generate_result_file"plugin="core"cat="serialization"><h1 class="op-des-h1">serialization: hdf5dpf generate result file</h1><figure class="figure-op-des"> <figcaption > Description </figcaption><div class = "figure-op-des-text"><p>Generate a dpf result file from provided information.</p>
14995-
</div></figure><div class="op-version">Version 0.0.0</div><h2 class="op-des-h2">Inputs</h2><div><table class="pin-box"><tbody><tr><td><pin-number-optional n="-7" ellipsis = "false"></pin-number-optional></td><td><pin-name name="h5_chunk_size"></pin-name></td><td><req-type typeName="(int32)"></req-type></td><td><div class = "pin-des-text"><p>Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.</p>
14996-
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-6" ellipsis = "false"></pin-number-optional></td><td><pin-name name="append_mode"></pin-name></td><td><req-type typeName="(bool)"></req-type></td><td><div class = "pin-des-text"><p>Experimental: Allow appending chunked data to the file. This disables fields container content deduplication.</p>
14995+
</div></figure><div class="op-version">Version 0.0.0</div><h2 class="op-des-h2">Inputs</h2><div><table class="pin-box"><tbody><tr><td><pin-number-optional n="-6" ellipsis = "false"></pin-number-optional></td><td><pin-name name="append_mode"></pin-name></td><td><req-type typeName="(bool)"></req-type></td><td><div class = "pin-des-text"><p>Experimental: Allow appending chunked data to the file. This disables fields container content deduplication.</p>
1499714996
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-5" ellipsis = "false"></pin-number-optional></td><td><pin-name name="dataset_size_compression_threshold"></pin-name></td><td><req-type typeName="(int32)"></req-type></td><td><div class = "pin-des-text"><p>Integer value that defines the minimum dataset size (in bytes) to use h5 native compression Applicable for arrays of floats, doubles and integers.</p>
1499814997
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-2" ellipsis = "false"></pin-number-optional></td><td><pin-name name="h5_native_compression"></pin-name></td><td><req-type typeName="(int32 | abstract_data_tree)"></req-type></td><td><div class = "pin-des-text"><p>Integer value / DataTree that defines the h5 native compression used For Integer Input {0: No Compression (default); 1-9: GZIP Compression : 9 provides maximum compression but at the slowest speed.}For DataTree Input {type: None / GZIP / ZSTD; level: GZIP (1-9) / ZSTD (1-20); num_threads: ZSTD (&gt;0)}</p>
1499914998
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-1" ellipsis = "false"></pin-number-optional></td><td><pin-name name="export_floats"></pin-name></td><td><req-type typeName="(bool)"></req-type></td><td><div class = "pin-des-text"><p>converts double to float to reduce file size (default is true)</p>
@@ -15004,8 +15003,7 @@ <h2 class="h2-main">Configurating operators</h2>
1500415003
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="4" ellipsis = "true"></pin-number-optional></td><td><pin-name name="input_name"></pin-name></td><td><req-type typeName="(string | any)"></req-type></td><td><div class = "pin-des-text"><p>Set of even and odd pins to serialize results. Odd pins (4, 6, 8...) are strings, and they represent the names of the results to be serialized. Even pins (5, 7, 9...) are DPF types, and they represent the results to be serialized. They should go in pairs (for each result name, there should be a result) and connected sequentially.</p>
1500515004
</div></td></tr></tbody></table></div><h2 class="op-des-h2">Outputs</h2><div><table class="pin-box"><tbody><tr><td><pin-number n="0" ellipsis = "false"></pin-number></td><td><pin-name name="data_sources"></pin-name></td><td><req-type typeName="(data_sources)"></req-type></td><td><div class = "pin-des-text"><p>data_sources filled with the H5 generated file path.</p>
1500615005
</div></td></tr></tbody></table></div><h2 class="op-des-h2">Configurations</h2><config-spec name="evaluate_inputs_before_run" default="false" doc="If this option is set to true, all input pins of the operator will be evaluated before entering the run method to maintain a correct Operator status." types="bool" ></config-spec><config-spec name="mutex" default="false" doc="If this option is set to true, the shared memory is prevented from being simultaneously accessed by multiple threads." types="bool" ></config-spec><h2 class="op-des-h2">Scripting</h2><scripting-part scripting_name="hdf5dpf_generate_result_file" license="none" cat="serialization" plugin="core" cpp-name="hdf5::h5dpf::make_result_file"></scripting-part><h2 class="op-des-h2">Changelog</h2><op-changelog content='{"0.0.0":"New"}'></op-changelog></div><div class="operator" id="migrate to h5dpf" scripting_name="migrate_to_h5dpf"plugin="core"cat="result"><h1 class="op-des-h1">result: migrate to h5dpf</h1><figure class="figure-op-des"> <figcaption > Description </figcaption><div class = "figure-op-des-text"><p>Read mesh properties from the results files contained in the streams or data sources and make those properties available through a mesh selection manager in output.User can input a GenericDataContainer that will map an item to a result name. Example of Map: {{ default: wf1}, {EUL: wf2}, {ENG_SE: wf3}}.</p>
15007-
</div></figure><div class="op-version">Version 0.0.0</div><h2 class="op-des-h2">Inputs</h2><div><table class="pin-box"><tbody><tr><td><pin-number-optional n="-7" ellipsis = "false"></pin-number-optional></td><td><pin-name name="h5_chunk_size"></pin-name></td><td><req-type typeName="(int32 | generic_data_container)"></req-type></td><td><div class = "pin-des-text"><p>Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.</p>
15008-
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-5" ellipsis = "false"></pin-number-optional></td><td><pin-name name="dataset_size_compression_threshold"></pin-name></td><td><req-type typeName="(int32 | generic_data_container)"></req-type></td><td><div class = "pin-des-text"><p>Integer value that defines the minimum dataset size (in bytes) to use h5 native compression Applicable for arrays of floats, doubles and integers.</p>
15006+
</div></figure><div class="op-version">Version 0.0.0</div><h2 class="op-des-h2">Inputs</h2><div><table class="pin-box"><tbody><tr><td><pin-number-optional n="-5" ellipsis = "false"></pin-number-optional></td><td><pin-name name="dataset_size_compression_threshold"></pin-name></td><td><req-type typeName="(int32 | generic_data_container)"></req-type></td><td><div class = "pin-des-text"><p>Integer value that defines the minimum dataset size (in bytes) to use h5 native compression Applicable for arrays of floats, doubles and integers.</p>
1500915007
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-2" ellipsis = "false"></pin-number-optional></td><td><pin-name name="h5_native_compression"></pin-name></td><td><req-type typeName="(int32 | abstract_data_tree | generic_data_container)"></req-type></td><td><div class = "pin-des-text"><p>Integer value / DataTree that defines the h5 native compression used For Integer Input {0: No Compression (default); 1-9: GZIP Compression : 9 provides maximum compression but at the slowest speed.}For DataTree Input {type: None / GZIP / ZSTD; level: GZIP (1-9) / ZSTD (1-20); num_threads: ZSTD (&gt;0)}</p>
1501015008
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number-optional n="-1" ellipsis = "false"></pin-number-optional></td><td><pin-name name="export_floats"></pin-name></td><td><req-type typeName="(bool | generic_data_container)"></req-type></td><td><div class = "pin-des-text"><p>Converts double to float to reduce file size (default is true).If False, nodal results are exported as double precision and elemental results as single precision.</p>
1501115009
</div></td></tr></tbody></table><table class="pin-box"><tbody><tr><td><pin-number n="0" ellipsis = "false"></pin-number></td><td><pin-name name="filename"></pin-name></td><td><req-type typeName="(string)"></req-type></td><td><div class = "pin-des-text"><p>filename of the migrated file</p>

src/ansys/dpf/core/operators/result/migrate_to_h5dpf.py

Lines changed: 0 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -25,8 +25,6 @@ class migrate_to_h5dpf(Operator):
2525
2626
Parameters
2727
----------
28-
h5_chunk_size: int or GenericDataContainer, optional
29-
Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.
3028
dataset_size_compression_threshold: int or GenericDataContainer, optional
3129
Integer value that defines the minimum dataset size (in bytes) to use h5 native compression Applicable for arrays of floats, doubles and integers.
3230
h5_native_compression: int or DataTree or GenericDataContainer, optional
@@ -60,8 +58,6 @@ class migrate_to_h5dpf(Operator):
6058
>>> op = dpf.operators.result.migrate_to_h5dpf()
6159
6260
>>> # Make input connections
63-
>>> my_h5_chunk_size = int()
64-
>>> op.inputs.h5_chunk_size.connect(my_h5_chunk_size)
6561
>>> my_dataset_size_compression_threshold = int()
6662
>>> op.inputs.dataset_size_compression_threshold.connect(my_dataset_size_compression_threshold)
6763
>>> my_h5_native_compression = int()
@@ -85,7 +81,6 @@ class migrate_to_h5dpf(Operator):
8581
8682
>>> # Instantiate operator and connect inputs in one line
8783
>>> op = dpf.operators.result.migrate_to_h5dpf(
88-
... h5_chunk_size=my_h5_chunk_size,
8984
... dataset_size_compression_threshold=my_dataset_size_compression_threshold,
9085
... h5_native_compression=my_h5_native_compression,
9186
... export_floats=my_export_floats,
@@ -104,7 +99,6 @@ class migrate_to_h5dpf(Operator):
10499

105100
def __init__(
106101
self,
107-
h5_chunk_size=None,
108102
dataset_size_compression_threshold=None,
109103
h5_native_compression=None,
110104
export_floats=None,
@@ -121,8 +115,6 @@ def __init__(
121115
super().__init__(name="hdf5::h5dpf::migrate_file", config=config, server=server)
122116
self._inputs = InputsMigrateToH5Dpf(self)
123117
self._outputs = OutputsMigrateToH5Dpf(self)
124-
if h5_chunk_size is not None:
125-
self.inputs.h5_chunk_size.connect(h5_chunk_size)
126118
if dataset_size_compression_threshold is not None:
127119
self.inputs.dataset_size_compression_threshold.connect(
128120
dataset_size_compression_threshold
@@ -159,12 +151,6 @@ def _spec() -> Specification:
159151
spec = Specification(
160152
description=description,
161153
map_input_pin_spec={
162-
-7: PinSpecification(
163-
name="h5_chunk_size",
164-
type_names=["int32", "generic_data_container"],
165-
optional=True,
166-
document=r"""Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.""",
167-
),
168154
-5: PinSpecification(
169155
name="dataset_size_compression_threshold",
170156
type_names=["int32", "generic_data_container"],
@@ -293,8 +279,6 @@ class InputsMigrateToH5Dpf(_Inputs):
293279
--------
294280
>>> from ansys.dpf import core as dpf
295281
>>> op = dpf.operators.result.migrate_to_h5dpf()
296-
>>> my_h5_chunk_size = int()
297-
>>> op.inputs.h5_chunk_size.connect(my_h5_chunk_size)
298282
>>> my_dataset_size_compression_threshold = int()
299283
>>> op.inputs.dataset_size_compression_threshold.connect(my_dataset_size_compression_threshold)
300284
>>> my_h5_native_compression = int()
@@ -319,8 +303,6 @@ class InputsMigrateToH5Dpf(_Inputs):
319303

320304
def __init__(self, op: Operator):
321305
super().__init__(migrate_to_h5dpf._spec().inputs, op)
322-
self._h5_chunk_size = Input(migrate_to_h5dpf._spec().input_pin(-7), -7, op, -1)
323-
self._inputs.append(self._h5_chunk_size)
324306
self._dataset_size_compression_threshold = Input(
325307
migrate_to_h5dpf._spec().input_pin(-5), -5, op, -1
326308
)
@@ -354,27 +336,6 @@ def __init__(self, op: Operator):
354336
)
355337
self._inputs.append(self._filtering_workflow)
356338

357-
@property
358-
def h5_chunk_size(self) -> Input:
359-
r"""Allows to connect h5_chunk_size input to the operator.
360-
361-
Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.
362-
363-
Returns
364-
-------
365-
input:
366-
An Input instance for this pin.
367-
368-
Examples
369-
--------
370-
>>> from ansys.dpf import core as dpf
371-
>>> op = dpf.operators.result.migrate_to_h5dpf()
372-
>>> op.inputs.h5_chunk_size.connect(my_h5_chunk_size)
373-
>>> # or
374-
>>> op.inputs.h5_chunk_size(my_h5_chunk_size)
375-
"""
376-
return self._h5_chunk_size
377-
378339
@property
379340
def dataset_size_compression_threshold(self) -> Input:
380341
r"""Allows to connect dataset_size_compression_threshold input to the operator.

src/ansys/dpf/core/operators/serialization/hdf5dpf_generate_result_file.py

Lines changed: 0 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -21,8 +21,6 @@ class hdf5dpf_generate_result_file(Operator):
2121
2222
Parameters
2323
----------
24-
h5_chunk_size: int, optional
25-
Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.
2624
append_mode: bool, optional
2725
Experimental: Allow appending chunked data to the file. This disables fields container content deduplication.
2826
dataset_size_compression_threshold: int, optional
@@ -57,8 +55,6 @@ class hdf5dpf_generate_result_file(Operator):
5755
>>> op = dpf.operators.serialization.hdf5dpf_generate_result_file()
5856
5957
>>> # Make input connections
60-
>>> my_h5_chunk_size = int()
61-
>>> op.inputs.h5_chunk_size.connect(my_h5_chunk_size)
6258
>>> my_append_mode = bool()
6359
>>> op.inputs.append_mode.connect(my_append_mode)
6460
>>> my_dataset_size_compression_threshold = int()
@@ -82,7 +78,6 @@ class hdf5dpf_generate_result_file(Operator):
8278
8379
>>> # Instantiate operator and connect inputs in one line
8480
>>> op = dpf.operators.serialization.hdf5dpf_generate_result_file(
85-
... h5_chunk_size=my_h5_chunk_size,
8681
... append_mode=my_append_mode,
8782
... dataset_size_compression_threshold=my_dataset_size_compression_threshold,
8883
... h5_native_compression=my_h5_native_compression,
@@ -101,7 +96,6 @@ class hdf5dpf_generate_result_file(Operator):
10196

10297
def __init__(
10398
self,
104-
h5_chunk_size=None,
10599
append_mode=None,
106100
dataset_size_compression_threshold=None,
107101
h5_native_compression=None,
@@ -120,8 +114,6 @@ def __init__(
120114
)
121115
self._inputs = InputsHdf5DpfGenerateResultFile(self)
122116
self._outputs = OutputsHdf5DpfGenerateResultFile(self)
123-
if h5_chunk_size is not None:
124-
self.inputs.h5_chunk_size.connect(h5_chunk_size)
125117
if append_mode is not None:
126118
self.inputs.append_mode.connect(append_mode)
127119
if dataset_size_compression_threshold is not None:
@@ -152,12 +144,6 @@ def _spec() -> Specification:
152144
spec = Specification(
153145
description=description,
154146
map_input_pin_spec={
155-
-7: PinSpecification(
156-
name="h5_chunk_size",
157-
type_names=["int32"],
158-
optional=True,
159-
document=r"""Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.""",
160-
),
161147
-6: PinSpecification(
162148
name="append_mode",
163149
type_names=["bool"],
@@ -284,8 +270,6 @@ class InputsHdf5DpfGenerateResultFile(_Inputs):
284270
--------
285271
>>> from ansys.dpf import core as dpf
286272
>>> op = dpf.operators.serialization.hdf5dpf_generate_result_file()
287-
>>> my_h5_chunk_size = int()
288-
>>> op.inputs.h5_chunk_size.connect(my_h5_chunk_size)
289273
>>> my_append_mode = bool()
290274
>>> op.inputs.append_mode.connect(my_append_mode)
291275
>>> my_dataset_size_compression_threshold = int()
@@ -310,10 +294,6 @@ class InputsHdf5DpfGenerateResultFile(_Inputs):
310294

311295
def __init__(self, op: Operator):
312296
super().__init__(hdf5dpf_generate_result_file._spec().inputs, op)
313-
self._h5_chunk_size = Input(
314-
hdf5dpf_generate_result_file._spec().input_pin(-7), -7, op, -1
315-
)
316-
self._inputs.append(self._h5_chunk_size)
317297
self._append_mode = Input(
318298
hdf5dpf_generate_result_file._spec().input_pin(-6), -6, op, -1
319299
)
@@ -355,27 +335,6 @@ def __init__(self, op: Operator):
355335
)
356336
self._inputs.append(self._input_name2)
357337

358-
@property
359-
def h5_chunk_size(self) -> Input:
360-
r"""Allows to connect h5_chunk_size input to the operator.
361-
362-
Size of each HDF5 chunk in kilobytes (KB). Default: 1 MB when compression is enabled; for uncompressed datasets, the default is the full dataset size x dimension.
363-
364-
Returns
365-
-------
366-
input:
367-
An Input instance for this pin.
368-
369-
Examples
370-
--------
371-
>>> from ansys.dpf import core as dpf
372-
>>> op = dpf.operators.serialization.hdf5dpf_generate_result_file()
373-
>>> op.inputs.h5_chunk_size.connect(my_h5_chunk_size)
374-
>>> # or
375-
>>> op.inputs.h5_chunk_size(my_h5_chunk_size)
376-
"""
377-
return self._h5_chunk_size
378-
379338
@property
380339
def append_mode(self) -> Input:
381340
r"""Allows to connect append_mode input to the operator.
0 Bytes
Binary file not shown.
0 Bytes
Binary file not shown.
-191 KB
Binary file not shown.
-34.4 KB
Binary file not shown.

0 commit comments

Comments
 (0)