|
44 | 44 | # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
45 | 45 | # Create the model and print its contents. This LS-DYNA d3plot file contains |
46 | 46 | # several individual results, each at different times. The d3plot file does not |
47 | | -# contain information related to Units. In this case, as the simulation was run |
48 | | -# through Mechanical, a file.actunits file is produced. If this file is |
49 | | -# supplemented in the data_sources, the units will be correctly fetched for all |
50 | | -# results in the file as well as for the mesh. |
| 47 | +# contain information related to Units. |
| 48 | + |
| 49 | +# In this case, as the simulation was run through Mechanical, a ''file.actunits'' |
| 50 | +# file is produced. If this file is supplemented in the data_sources, the units |
| 51 | +# will be correctly fetched for all results in the file as well as for the mesh. |
51 | 52 |
|
52 | 53 | d3plot = examples.download_d3plot_beam() |
53 | | -ds = dpf.DataSources() |
54 | | -ds.set_result_file_path(d3plot[0], "d3plot") |
55 | | -ds.add_file_path(d3plot[3], "actunits") |
56 | | -my_model = dpf.Model(ds) |
57 | | -# print(my_model) |
| 54 | +my_data_sources = dpf.DataSources() |
| 55 | +my_data_sources.set_result_file_path(d3plot[0], key="d3plot") |
| 56 | +my_data_sources.add_file_path(d3plot[3], key="actunits") |
| 57 | +my_model = dpf.Model(my_data_sources) |
| 58 | +print(my_model) |
58 | 59 |
|
59 | 60 | ############################################################################### |
60 | 61 | # The model has solid (3D) elements and beam (1D) elements. Some of the results |
|
72 | 73 | mesh=my_meshed_region, property=dpf.common.elemental_properties.element_shape |
73 | 74 | ).eval() |
74 | 75 |
|
75 | | -# Define the meshes in separate variables |
| 76 | +# Define the meshes for each body in separate variables |
76 | 77 | ball_mesh = my_meshes.get_mesh(label_space_or_index={"body": 1, "elshape": 1}) |
77 | 78 | plate_mesh = my_meshes.get_mesh(label_space_or_index={"body": 2, "elshape": 2}) |
78 | 79 |
|
79 | 80 | # print(my_meshes) |
| 81 | + |
80 | 82 | ############################################################################### |
81 | 83 | # Ball |
82 | 84 |
|
83 | | -# print(ball_mesh) |
84 | | -# my_ball_mesh.plot() |
| 85 | +print("Ball mesh", "\n", ball_mesh, "\n") |
| 86 | +ball_mesh.plot(title="Ball mesh", text="Ball mesh") |
85 | 87 |
|
86 | 88 | ############################################################################### |
87 | 89 | # Plate |
88 | 90 |
|
89 | | -# print(my_plate_mesh) |
90 | | -# my_plate_mesh.plot() |
| 91 | +print("Plate mesh", "\n", plate_mesh) |
| 92 | +plate_mesh.plot(title="Plate mesh", text="Plate mesh") |
91 | 93 |
|
92 | 94 | ############################################################################### |
| 95 | +# Define the mesh scoping to use it with the operators |
| 96 | +my_meshes_scoping = ops.scoping.split_on_property_type(mesh=my_meshed_region).eval() |
93 | 97 |
|
94 | | -my_meshes_scopings = ops.scoping.split_on_property_type(mesh=my_meshed_region).eval() |
| 98 | +# Define the mesh scoping for each body/element shape in separate variables |
| 99 | +ball_scoping = my_meshes_scoping.get_scoping(label_space_or_index={"elshape": 1}) |
| 100 | +plate_scoping = my_meshes_scoping.get_scoping(label_space_or_index={"elshape": 2}) |
95 | 101 |
|
96 | | -# Define the mesh scoping in separate variables |
97 | | -# Here we have a elemental location |
98 | | -ball_scoping = my_meshes_scopings.get_scoping(label_space_or_index={"elshape": 1}) |
99 | | -plate_scoping = my_meshes_scopings.get_scoping(label_space_or_index={"elshape": 2}) |
100 | | - |
101 | | -# We will need a nodal location, so we have to transpose the mesh scoping from elemental to nodal |
102 | | -ball_scoping_nodal = dpf.operators.scoping.transpose( |
103 | | - mesh_scoping=ball_scoping, meshed_region=my_meshed_region |
104 | | -).eval() |
| 102 | +# We will plot the results in a mesh deformed by the displacement. The displacement |
| 103 | +# is in a nodal location, so we need to define a nodal scoping for the palte |
105 | 104 | plate_scoping_nodal = dpf.operators.scoping.transpose( |
106 | 105 | mesh_scoping=plate_scoping, meshed_region=my_meshed_region |
107 | 106 | ).eval() |
| 107 | + |
| 108 | +############################################################################### |
| 109 | + |
| 110 | +# The next manipulations can be applied to the following beam operators |
| 111 | +# that handle the correspondent results : |
| 112 | + |
| 113 | +# - beam_axial_force: Beam Axial Force |
| 114 | +# - beam_s_shear_force: Beam S Shear Force |
| 115 | +# - beam_t_shear_force: Beam T Shear Force |
| 116 | +# - beam_s_bending_moment: Beam S Bending Moment |
| 117 | +# - beam_t_bending_moment: Beam T Bending Moment |
| 118 | +# - beam_torsional_moment: Beam Torsional Moment |
| 119 | +# - beam_axial_stress: Beam Axial Stress |
| 120 | +# - beam_rs_shear_stress: Beam Rs Shear Stress |
| 121 | +# - beam_tr_shear_stress: Beam Tr Shear Stress |
| 122 | +# - beam_axial_plastic_strain: Beam Axial Plastic Strain |
| 123 | +# - beam_axial_total_strain: Beam Axial Total Strain |
| 124 | + |
| 125 | +# We do not demonstrate separately how to use each of them in this example |
| 126 | +# once they have similar methods. We .... in the beam stress and forces results |
| 127 | + |
| 128 | +# So, if you want to operate on other operator, uou just need to change their |
| 129 | +# scripting name in the code lines. |
| 130 | + |
108 | 131 | ############################################################################### |
109 | 132 | # Comparing results in different time steps |
110 | 133 | # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
111 | | -# 1) Define the time steps |
| 134 | + |
| 135 | +# 1) Define the time steps set |
112 | 136 | time_steps_set = [2, 6, 12] |
| 137 | + |
| 138 | +# 2) Prepare the collections to store the results for each time step |
| 139 | + |
| 140 | +# To compare the results in the same image you have to copy the mesh for each plot |
| 141 | +plate_meshes = dpf.MeshesContainer() |
| 142 | +plate_meshes.add_label("time") |
| 143 | + |
| 144 | +# The displacements for each time steps to deform the mesh accordingly |
| 145 | +plate_displacements = dpf.FieldsContainer() |
| 146 | +plate_displacements.add_label(label="time") |
| 147 | + |
| 148 | +# The axial force results for each time steps. Here |
| 149 | +plate_axial_force = dpf.FieldsContainer() |
| 150 | +plate_axial_force.add_label(label="time") |
| 151 | + |
| 152 | +# 3) Use the :class: `Plotter <ansys.dpf.core.plotter.DpfPlotter>` class |
| 153 | +# to add the plots in the same image |
| 154 | +comparison_plot = dpf.plotter.DpfPlotter() |
| 155 | + |
| 156 | +side_bar_args = dict( |
| 157 | + title="Beam axial force (N)", fmt="%.2e", title_font_size=15, label_font_size=15 |
| 158 | +) |
| 159 | + |
| 160 | +# 4) As we want to compare the results in the same plot we will need this variable. |
| 161 | +# It represents the distance between the meshes |
113 | 162 | j = -400 |
114 | | -# 2) Copy the mesh of interest. Here it is the plate mesh that we copy along the X axis |
115 | | -for i in time_steps_set: |
| 163 | + |
| 164 | +# Here we use a loop where each iteration correspond to the manipulations for a given time step |
| 165 | + |
| 166 | +# 5) Copy the mesh of interest. Here it is the plate mesh that we copy along the X axis |
| 167 | +for i in time_steps_set: # Loop through the time steps |
116 | 168 | # Copy the mesh |
117 | | - globals()[f"plate_mesh_{i}"] = plate_mesh.deep_copy() |
| 169 | + plate_meshes.add_mesh(label_space={"time": i}, mesh=plate_mesh.deep_copy()) |
118 | 170 |
|
119 | | - # 3) Get the plot coordinates that will be changed |
120 | | - coords_to_update = globals()[f"plate_mesh_{i}"].nodes.coordinates_field |
121 | | - # 4) Define the coordinates where the new mesh will be placed |
| 171 | + # 6) Get the plot coordinates that will be changed (so we can compare the results side by side) |
| 172 | + coords_to_update = plate_meshes.get_mesh( |
| 173 | + label_space_or_index={"time": i} |
| 174 | + ).nodes.coordinates_field |
| 175 | + |
| 176 | + # 7) Define the coordinates where the new mesh will be placed |
122 | 177 | overall_field = dpf.fields_factory.create_3d_vector_field( |
123 | 178 | num_entities=1, location=dpf.locations.overall |
124 | 179 | ) |
125 | 180 | overall_field.append(data=[j, 0.0, 0.0], scopingid=1) |
126 | 181 |
|
127 | | - # 5) Define the updated coordinates |
| 182 | + # 8) Define the updated coordinates |
128 | 183 | new_coordinates = ops.math.add(fieldA=coords_to_update, fieldB=overall_field).eval() |
129 | 184 | coords_to_update.data = new_coordinates.data |
130 | 185 |
|
131 | | - # 6) Extract the result, here we start by getting the displacement |
132 | | - globals()[f"my_displacement_{i}"] = my_model.results.displacement( |
133 | | - time_scoping=i, mesh_scoping=plate_scoping_nodal |
134 | | - ).eval()[0] |
135 | | - |
136 | | - # Increment the coordinate value for the loop |
| 186 | + # 9) Extract the result, here we start by getting the beam_rs_shear_stress |
| 187 | + plate_axial_force.add_field( |
| 188 | + label_space={"time": i}, |
| 189 | + field=my_model.results.beam_axial_force( |
| 190 | + time_scoping=i, mesh_scoping=plate_scoping_nodal |
| 191 | + ).eval()[0], |
| 192 | + ) |
| 193 | + # 10) We will also get the displacement to deform the mesh |
| 194 | + plate_displacements.add_field( |
| 195 | + label_space={"time": i}, |
| 196 | + field=my_model.results.displacement( |
| 197 | + time_scoping=i, mesh_scoping=plate_scoping_nodal |
| 198 | + ).eval()[0], |
| 199 | + ) |
| 200 | + # 11) Add the result and the mesh to the plot |
| 201 | + comparison_plot.add_field( |
| 202 | + field=plate_axial_force.get_field(label_space_or_index={"time": i}), |
| 203 | + meshed_region=plate_meshes.get_mesh(label_space_or_index={"time": i}), |
| 204 | + deform_by=plate_displacements.get_field(label_space_or_index={"time": i}), |
| 205 | + scalar_bar_args=side_bar_args, |
| 206 | + ) |
| 207 | + comparison_plot.add_node_labels( |
| 208 | + nodes=[289], |
| 209 | + labels=[f"Time step = {i}"], |
| 210 | + meshed_region=plate_meshes.get_mesh(label_space_or_index={"time": i}), |
| 211 | + font_size=10, |
| 212 | + ) |
| 213 | + # 12) Increment the coordinate value for the loop |
137 | 214 | j = j - 400 |
| 215 | + |
| 216 | +# Visualise the plot |
| 217 | +comparison_plot.show_figure() |
| 218 | + |
138 | 219 | ############################################################################### |
139 | | -# Use the :class: `Plotter <ansys.dpf.core.plotter.DpfPlotter>` class to add the plots |
140 | | -# in the same image |
| 220 | +# Plot a graph over time for the elements with max and min results values |
| 221 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
141 | 222 |
|
142 | | -comparison_plot = dpf.plotter.DpfPlotter() |
| 223 | +# Here we make a workflow with a more verbose approach. This is useful because we use operators |
| 224 | +# having several matching inputs or outputs. So the connexions are more clear, and it is |
| 225 | +# easier to use and reuse the workflow. |
143 | 226 |
|
144 | | -comparison_plot.add_field( |
145 | | - field=my_displacement_2, meshed_region=plate_mesh_2, deform_by=my_displacement_2 |
146 | | -) |
147 | | -comparison_plot.add_field( |
148 | | - field=my_displacement_6, meshed_region=plate_mesh_6, deform_by=my_displacement_6 |
149 | | -) |
150 | | -comparison_plot.add_field( |
151 | | - field=my_displacement_12, meshed_region=plate_mesh_12, deform_by=my_displacement_12 |
| 227 | +# Find the element with the max values over all the time steps and return its ID |
| 228 | + |
| 229 | +# Define the workflow object |
| 230 | +max_workflow = dpf.Workflow() |
| 231 | +max_workflow.progress_bar = False |
| 232 | +# Define the norm operator |
| 233 | +max_norm = ops.math.norm_fc() |
| 234 | +# Define the max of each entity with the evaluated norm as an input |
| 235 | +max_per_ent = ops.min_max.min_max_by_entity(fields_container=max_norm.outputs.fields_container) |
| 236 | +# Define the max over all entities |
| 237 | +global_max = ops.min_max.min_max(field=max_per_ent.outputs.field_max) |
| 238 | +# Get the scoping |
| 239 | +max_scop = ops.utility.extract_scoping(field_or_fields_container=global_max.outputs.field_max) |
| 240 | +# Get the id |
| 241 | +max_id = ops.scoping.scoping_get_attribute( |
| 242 | + scoping=max_scop.outputs.mesh_scoping_as_scoping, property_name="ids" |
152 | 243 | ) |
153 | 244 |
|
154 | | -comparison_plot.show_figure() |
| 245 | +# Add the operators to the workflow |
| 246 | +max_workflow.add_operators(operators=[max_norm, max_per_ent, global_max, max_scop, max_id]) |
| 247 | +max_workflow.set_input_name("fields_container", max_norm.inputs.fields_container) |
| 248 | +max_workflow.set_output_name("max_id", max_id.outputs.property_as_vector_int32_) |
| 249 | +max_workflow.set_output_name("max_entity_scoping", max_scop.outputs.mesh_scoping_as_scoping) |
155 | 250 |
|
156 | 251 | ############################################################################### |
157 | | -# For example the ball velocity |
158 | | -# v = my_model.results.velocity(time_scoping=my_time_scoping, mesh_scoping=ball_scoping).eval() |
| 252 | +# Get all the time steps |
| 253 | +time_all = my_model.metadata.time_freq_support.time_frequencies |
| 254 | +# Extract all the stresses results on the plate |
| 255 | +plate_beam_axial_stress = my_model.results.beam_axial_stress( |
| 256 | + time_scoping=time_all, mesh_scoping=plate_scoping |
| 257 | +).eval() |
| 258 | +plate_beam_rs_shear_stress = my_model.results.beam_rs_shear_stress( |
| 259 | + time_scoping=time_all, mesh_scoping=plate_scoping |
| 260 | +).eval() |
| 261 | +plate_beam_tr_shear_stress = my_model.results.beam_tr_shear_stress( |
| 262 | + time_scoping=time_all, mesh_scoping=plate_scoping |
| 263 | +).eval() |
| 264 | + |
| 265 | +# List of operators to simplify the code |
| 266 | +beam_stresses = [plate_beam_axial_stress, plate_beam_rs_shear_stress, plate_beam_tr_shear_stress] |
| 267 | +graph_labels = [ |
| 268 | + "Beam axial stress", |
| 269 | + "Beam rs shear stress", |
| 270 | + "Beam tr shear stress", |
| 271 | +] |
| 272 | +# List of elements ids |
| 273 | +max_stress_elements_ids = [] |
| 274 | +# Scopings container |
| 275 | +max_stress_elements_scopings = dpf.ScopingsContainer() |
| 276 | +max_stress_elements_scopings.add_label("stress_result") |
| 277 | + |
| 278 | +# Loop through each stress result that gets the elements with maximum solicitation id, re-escope the fields |
| 279 | +# container to keep only the data for this element, and finally plot a stress x time graph |
| 280 | + |
| 281 | +for j in range(0, len(beam_stresses)): # Loop through each stress result |
| 282 | + # Use the pre-defined workflow to define the element with maximum solicitation |
| 283 | + max_workflow.connect(pin_name="fields_container", inpt=beam_stresses[j]) |
| 284 | + max_stress_elements_ids.append( |
| 285 | + max_workflow.get_output(pin_name="max_id", output_type=dpf.types.vec_int) |
| 286 | + ) |
| 287 | + max_stress_elements_scopings.add_scoping( |
| 288 | + label_space={"stress_result": j}, |
| 289 | + scoping=max_workflow.get_output( |
| 290 | + pin_name="max_entity_scoping", output_type=dpf.types.scoping |
| 291 | + ), |
| 292 | + ) |
| 293 | + |
| 294 | + # Re-scope the results to keep only the data for the identified element |
| 295 | + beam_stresses[j] = ops.scoping.rescope_fc( |
| 296 | + fields_container=beam_stresses[j], |
| 297 | + mesh_scoping=max_stress_elements_scopings.get_scoping( |
| 298 | + label_space_or_index={"stress_result": j} |
| 299 | + ), |
| 300 | + ).eval() |
| 301 | + |
| 302 | + # The d3plot file gives us fields containers labeled by time. So in each field we have the stress value in a |
| 303 | + # given time for the chosen element. We need to rearrange the fields container into fields. |
| 304 | + |
| 305 | + beam_stresses[j] = ops.utility.merge_to_field_matrix(fields1=beam_stresses[j]).eval() |
| 306 | + plt.plot( |
| 307 | + time_all.data, |
| 308 | + beam_stresses[j].data[0], |
| 309 | + label=f"{graph_labels[j]}, element id:{max_stress_elements_ids[j][0]}", |
| 310 | + ) |
| 311 | + |
| 312 | +plt.title("Beam stresses evolution") |
| 313 | +plt.xlabel("Time (s)") |
| 314 | +plt.ylabel("Beam stresses (MPa)") |
| 315 | +plt.legend() |
| 316 | +plt.show() |
159 | 317 |
|
160 | 318 | ############################################################################### |
| 319 | +# Results coordinates system |
| 320 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 321 | + |
| 322 | +# The results are given in the Cartesian coordinates system by default. |
| 323 | + |
| 324 | +# The beam results are given directly in the local directions. For example the beam stresses: |
| 325 | + |
| 326 | +# We have the axial stress, given in the beam axis, and the stresses defined in the |
| 327 | +# cross-section directions, tr stress in the transverse direction (t) and rs stress |
| 328 | +# perpendicular to the tr direction (s). |
| 329 | + |
| 330 | +# Those results are given as scalars. |
| 331 | + |
| 332 | +# Unfortunately there are no operators for LS-DYNA files that directly allows you to: |
| 333 | +# - Rotate results from local coordinate system to global coordinate system; |
| 334 | +# - Extract the rotation matrix between the local and global coordinate systems; |
0 commit comments