|
1 | 1 | .. _ref_tutorials_import_result_file: |
2 | 2 |
|
| 3 | +========================= |
| 4 | +Import result file in DPF |
| 5 | +========================= |
| 6 | + |
| 7 | +.. |Model| replace:: :class:`Model <ansys.dpf.core.model.Model>` |
| 8 | +.. |DataSources| replace:: :class:`DataSources <ansys.dpf.core.data_sources.DataSources>` |
| 9 | +.. |Examples| replace:: :mod:`Examples<ansys.dpf.core.examples>` |
| 10 | +.. |set_result_file_path| replace:: :func:`set_result_file_path() <ansys.dpf.core.data_sources.DataSources.set_result_file_path>` |
| 11 | +.. |add_file_path| replace:: :func:`add_file_path() <ansys.dpf.core.data_sources.DataSources.add_file_path>` |
| 12 | + |
| 13 | +This tutorial shows how to import a result file in DPF. |
| 14 | + |
| 15 | +You have two approaches to import a result file in DPF: |
| 16 | + |
| 17 | +- Using the |DataSources| object |
| 18 | +- Using the |Model| object |
| 19 | + |
| 20 | +.. note:: |
| 21 | + |
| 22 | + The |Model| extracts a large amount of information by default (results, mesh and analysis data). |
| 23 | + If using this helper takes a long time for processing the code, mind using a |DataSources| object |
| 24 | + and instantiating operators directly with it. Check the ":ref:`get_mesh_mesh_provider`" for more |
| 25 | + information on how to get a mesh from a result file. |
| 26 | + |
| 27 | +Define the result file path |
| 28 | +--------------------------- |
| 29 | + |
| 30 | +Both approaches need a file path to be defined. Here we will download result files available in |
| 31 | +our |Examples| package. |
| 32 | + |
| 33 | +.. tab-set:: |
| 34 | + |
| 35 | + .. tab-item:: MAPDL |
| 36 | + |
| 37 | + .. jupyter-execute:: |
| 38 | + |
| 39 | + # Import the ``ansys.dpf.core`` module, including examples files and the operators subpackage |
| 40 | + from ansys.dpf import core as dpf |
| 41 | + from ansys.dpf.core import examples |
| 42 | + from ansys.dpf.core import operators as ops |
| 43 | + |
| 44 | + # Define the .rst result file |
| 45 | + result_file_path_11 = examples.find_static_rst() |
| 46 | + |
| 47 | + # Define the modal superposition harmonic analysis (.mode, .rfrq and .rst) result files |
| 48 | + result_file_path_12 = examples.download_msup_files_to_dict() |
| 49 | + |
| 50 | + print("1:", "\n",result_file_path_11, "\n") |
| 51 | + print("2:", "\n",result_file_path_12, "\n") |
| 52 | + |
| 53 | + .. tab-item:: LSDYNA |
| 54 | + |
| 55 | + .. jupyter-execute:: |
| 56 | + |
| 57 | + # Import the ``ansys.dpf.core`` module, including examples files and the operators subpackage |
| 58 | + from ansys.dpf import core as dpf |
| 59 | + from ansys.dpf.core import examples |
| 60 | + from ansys.dpf.core import operators as ops |
| 61 | + |
| 62 | + # Define the .d3plot result file |
| 63 | + result_file_path_21 = examples.download_d3plot_beam() |
| 64 | + |
| 65 | + # Define the .binout result file |
| 66 | + result_file_path_22 = examples.download_binout_matsum() |
| 67 | + |
| 68 | + print("1:", "\n",result_file_path_21, "\n") |
| 69 | + print("2:", "\n",result_file_path_22, "\n") |
| 70 | + |
| 71 | + .. tab-item:: Fluent |
| 72 | + |
| 73 | + .. jupyter-execute:: |
| 74 | + |
| 75 | + # Import the ``ansys.dpf.core`` module, including examples files and the operators subpackage |
| 76 | + from ansys.dpf import core as dpf |
| 77 | + from ansys.dpf.core import examples |
| 78 | + from ansys.dpf.core import operators as ops |
| 79 | + |
| 80 | + # Define the project .flprj result file |
| 81 | + result_file_path_31 = examples.download_fluent_axial_comp()["flprj"] |
| 82 | + |
| 83 | + # Define the CFF .cas.h5/.dat.h5 result files |
| 84 | + result_file_path_32 = examples.download_fluent_axial_comp() |
| 85 | + |
| 86 | + print("1:", "\n",result_file_path_31, "\n") |
| 87 | + print("2:", "\n",result_file_path_32, "\n") |
| 88 | + |
| 89 | + .. tab-item:: CFX |
| 90 | + |
| 91 | + .. jupyter-execute:: |
| 92 | + |
| 93 | + # Import the ``ansys.dpf.core`` module, including examples files and the operators subpackage |
| 94 | + from ansys.dpf import core as dpf |
| 95 | + from ansys.dpf.core import examples |
| 96 | + from ansys.dpf.core import operators as ops |
| 97 | + |
| 98 | + # Define the project .res result file |
| 99 | + result_file_path_41 = examples.download_cfx_mixing_elbow() |
| 100 | + |
| 101 | + # Define the CFF .cas.cff/.dat.cff result files |
| 102 | + result_file_path_42 = examples.download_cfx_heating_coil() |
| 103 | + |
| 104 | + print("1:", "\n",result_file_path_41, "\n") |
| 105 | + print("2:", "\n",result_file_path_42, "\n") |
| 106 | + |
| 107 | +Use a |DataSources| |
| 108 | +------------------- |
| 109 | + |
| 110 | +The |DataSources| object manages paths to their files. Use this object to declare data |
| 111 | +inputs for DPF operators and define their locations. |
| 112 | + |
| 113 | +.. tab-set:: |
| 114 | + |
| 115 | + .. tab-item:: MAPDL |
| 116 | + |
| 117 | + **a) `.rst` result file** |
| 118 | + |
| 119 | + You create the |DataSources| object by defining the the path to the main result file. |
| 120 | + |
| 121 | + .. jupyter-execute:: |
| 122 | + |
| 123 | + # Create the DataSources object |
| 124 | + my_data_sources_11 = dpf.DataSources(result_path=result_file_path_11) |
| 125 | + |
| 126 | + **b) `.mode`, `.rfrq` and `.rst` result files** |
| 127 | + |
| 128 | + In the modal superposition, modal coefficients are multiplied by mode shapes (of a previous modal analysis) |
| 129 | + to analyse a structure under given boundary conditions in a range of frequencies. Doing this expansion “on demand” |
| 130 | + in DPF instead of in the solver reduces the size of the result files. |
| 131 | + |
| 132 | + The expansion is recursive in DPF: first the modal response is read. Then, “upstream” mode shapes are found in |
| 133 | + the data sources, where they are read and expanded. |
| 134 | + |
| 135 | + To create a recursive workflow you have to add the upstream data to the main |DataSources| object. Upstream refers |
| 136 | + to a source that provides data to a particular process. |
| 137 | + |
| 138 | + .. jupyter-execute:: |
| 139 | + |
| 140 | + # Create the DataSources object |
| 141 | + my_data_sources_12 = dpf.DataSources() |
| 142 | + # Define the main result data |
| 143 | + my_data_sources_12.set_result_file_path(filepath=result_file_path_12["rfrq"], key='rfrq') |
| 144 | + |
| 145 | + # Create the upstream DataSources object with the main upstream data |
| 146 | + up_stream_ds_12 = dpf.DataSources(result_path=result_file_path_12["mode"]) |
| 147 | + # Add the additional upstream data to the upstream DataSources object |
| 148 | + up_stream_ds_12.add_file_path(filepath=result_file_path_12["rst"]) |
| 149 | + |
| 150 | + # Add the upstream DataSources to the main DataSources object |
| 151 | + my_data_sources_12.add_upstream(upstream_data_sources=up_stream_ds_12) |
| 152 | + |
| 153 | + .. tab-item:: LSDYNA |
| 154 | + |
| 155 | + **a) `.d3plot` result file** |
| 156 | + |
| 157 | + This LS-DYNA d3plot file contains several individual results, each at different times. |
| 158 | + The d3plot file does not contain information related to Units. In this case, as the |
| 159 | + simulation was run through Mechanical, a ``file.actunits`` file is produced. If this |
| 160 | + file is supplemented in the |DataSources|, the units will be correctly fetched for all |
| 161 | + results in the file as well as for the mesh. |
| 162 | + |
| 163 | + .. jupyter-execute:: |
| 164 | + |
| 165 | + # Create the DataSources object |
| 166 | + my_data_sources_21 = dpf.DataSources() |
| 167 | + my_data_sources_21.set_result_file_path(filepath=result_file_path_21[0], key="d3plot") |
| 168 | + my_data_sources_21.add_file_path(filepath=result_file_path_21[3], key="actunits") |
| 169 | + |
| 170 | + **b) `.binout` result file** |
| 171 | + |
| 172 | + The extension key ``.binout`` is not specified in the result file. Thus, we use the |
| 173 | + |set_result_file_path| method to correctly implement the result file to the |DataSources| by giving |
| 174 | + explicitly the extension key as an argument. |
| 175 | + |
| 176 | + .. jupyter-execute:: |
| 177 | + |
| 178 | + # Create the DataSources object |
| 179 | + my_data_sources_22 = dpf.DataSources() |
| 180 | + # Define the the path to the main result |
| 181 | + my_data_sources_22.set_result_file_path(filepath=result_file_path_22, key="binout") |
| 182 | + |
| 183 | + .. tab-item:: Fluent |
| 184 | + |
| 185 | + **a) `.flprj` result file** |
| 186 | + |
| 187 | + You create the |DataSources| object by defining the the path to the main result file. |
| 188 | + |
| 189 | + .. jupyter-execute:: |
| 190 | + |
| 191 | + # Create the DataSources object |
| 192 | + my_data_sources_31 = dpf.DataSources(result_path=result_file_path_31) |
| 193 | + |
| 194 | + **b) `.cas.h5`, `.dat.h5` result files** |
| 195 | + |
| 196 | + Here we have a main and an additional result files. Thus, we use the |
| 197 | + |set_result_file_path| method, to correctly implement the result file to the |DataSources| by giving |
| 198 | + explicitly the first extension key as an argument, and the |add_file_path| method, to add the additional |
| 199 | + result file. |
| 200 | + |
| 201 | + .. jupyter-execute:: |
| 202 | + |
| 203 | + # Create the DataSources object |
| 204 | + my_data_sources_32 = dpf.DataSources() |
| 205 | + # Define the path to the main result file |
| 206 | + my_data_sources_32.set_result_file_path(filepath=result_file_path_32['cas'][0], key="cas") |
| 207 | + # Add the additional result file to the DataSources |
| 208 | + my_data_sources_32.add_file_path(filepath=result_file_path_32['dat'][0], key="dat") |
| 209 | + |
| 210 | + .. tab-item:: CFX |
| 211 | + |
| 212 | + **a) `.res` result file** |
| 213 | + |
| 214 | + You create the |DataSources| object by defining the the path to the main result file. |
| 215 | + |
| 216 | + .. jupyter-execute:: |
| 217 | + |
| 218 | + # Create the DataSources object |
| 219 | + my_data_sources_41 = dpf.DataSources(result_path=result_file_path_41) |
| 220 | + |
| 221 | + **b) `.cas.cff`, `.dat.cff` result files** |
| 222 | + |
| 223 | + Here we have a main and an additional result files. Thus, we use the |
| 224 | + |set_result_file_path| method, to correctly implement the result file to the |DataSources| by giving |
| 225 | + explicitly the first extension key as an argument, and the |add_file_path| method, to add the additional |
| 226 | + result file. |
| 227 | + |
| 228 | + .. jupyter-execute:: |
| 229 | + |
| 230 | + # Create the DataSources object |
| 231 | + my_data_sources_42 = dpf.DataSources() |
| 232 | + # Define the path to the main result file |
| 233 | + my_data_sources_42.set_result_file_path(filepath=result_file_path_42["cas"], key="cas") |
| 234 | + # Add the additional result file to the DataSources |
| 235 | + my_data_sources_42.add_file_path(filepath=result_file_path_42["dat"], key="dat") |
| 236 | + |
| 237 | +Use a |Model| |
| 238 | +------------- |
| 239 | + |
| 240 | +The |Model| is a helper designed to give shortcuts to the user to access the analysis results |
| 241 | +metadata, by opening a DataSources or a Streams, and to instanciate results provider for it. |
| 242 | + |
| 243 | +To create a |Model| you can provide the result file path, in the case you are working with a single result |
| 244 | +file with an explicit extension key, or a |DataSources| as an argument. |
| 245 | + |
| 246 | +.. tab-set:: |
| 247 | + |
| 248 | + .. tab-item:: MAPDL |
| 249 | + |
| 250 | + **a) `.rst` result file** |
| 251 | + |
| 252 | + .. jupyter-execute:: |
| 253 | + |
| 254 | + # Create the model with the result file path |
| 255 | + my_model_11 = dpf.Model(data_sources=result_file_path_11) |
| 256 | + |
| 257 | + # Create the model with the DataSources |
| 258 | + my_model_12 = dpf.Model(data_sources=my_data_sources_11) |
| 259 | + |
| 260 | + **b) `.mode`, `.rfrq` and `.rst` result files** |
| 261 | + |
| 262 | + .. jupyter-execute:: |
| 263 | + |
| 264 | + # Create the model with the DataSources |
| 265 | + my_model_13 = dpf.Model(data_sources=my_data_sources_12) |
| 266 | + |
| 267 | + .. tab-item:: LSDYNA |
| 268 | + |
| 269 | + **a) `.d3plot` result file** |
| 270 | + |
| 271 | + .. jupyter-execute:: |
| 272 | + |
| 273 | + # Create the model with the DataSources |
| 274 | + my_model_21 = dpf.Model(data_sources=my_data_sources_21) |
| 275 | + |
| 276 | + **b) `.binout` result file** |
| 277 | + |
| 278 | + .. jupyter-execute:: |
| 279 | + |
| 280 | + # Create the model with the DataSources |
| 281 | + my_model_22 = dpf.Model(data_sources=my_data_sources_22) |
| 282 | + |
| 283 | + .. tab-item:: Fluent |
| 284 | + |
| 285 | + **a) `.flprj` result file** |
| 286 | + |
| 287 | + .. jupyter-execute:: |
| 288 | + |
| 289 | + # Create the model with the result file path |
| 290 | + my_model_31 = dpf.Model(data_sources=result_file_path_31) |
| 291 | + |
| 292 | + # Create the model with the DataSources |
| 293 | + my_model_32 = dpf.Model(data_sources=my_data_sources_31) |
| 294 | + |
| 295 | + **b) `.cas.h5`, `.dat.h5` result files** |
| 296 | + |
| 297 | + .. jupyter-execute:: |
| 298 | + |
| 299 | + # Create the model with the DataSources |
| 300 | + my_model_33 = dpf.Model(data_sources=my_data_sources_32) |
| 301 | + |
| 302 | + .. tab-item:: CFX |
| 303 | + |
| 304 | + .. jupyter-execute:: |
| 305 | + |
| 306 | + **a) `.res` result file** |
| 307 | + |
| 308 | + .. jupyter-execute:: |
| 309 | + |
| 310 | + # Create the model with the result file path |
| 311 | + my_model_41 = dpf.Model(data_sources=result_file_path_41) |
| 312 | + |
| 313 | + # Create the model with the DataSources |
| 314 | + my_model_42 = dpf.Model(data_sources=my_data_sources_41) |
| 315 | + |
| 316 | + **b) `.cas.cff`, `.dat.cff` result files** |
| 317 | + |
| 318 | + .. jupyter-execute:: |
| 319 | + |
| 320 | + # Create the model with the DataSources |
| 321 | + my_model_43 = dpf.Model(data_sources=my_data_sources_42) |
| 322 | + |
0 commit comments